July  2011, 7(3): 753-765. doi: 10.3934/jimo.2011.7.753

Stability of a retrial queueing network with different classes of customers and restricted resource pooling

1. 

Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, South Korea

Received  September 2010 Revised  May 2011 Published  June 2011

We consider a retrial queueing network with different classes of customers and several servers. Each customer class is associated with a set of servers who can serve the class of customers. Customers of each class exogenously arrive according to a Poisson process. If an exogenously arriving customer finds upon his arrival any idle server who can serve the customer class, then he begins to receive a service by one of the available servers. Otherwise he joins the retrial group, and then tries his luck again after exponential time, the mean of which is determined by his customer class. Service times of each server are assumed to have general distribution. The retrial queueing network can be represented by a Markov process, with the number of customers of each class, and the customer class and the remaining service time of each busy server. Using the fluid limit technique, we find a necessary and sufficient condition for the positive Harris recurrence of the representing Markov process. This work is the first that applies the fluid limit technique to a model with retrial phenomena.
Citation: Bara Kim. Stability of a retrial queueing network with different classes of customers and restricted resource pooling. Journal of Industrial & Management Optimization, 2011, 7 (3) : 753-765. doi: 10.3934/jimo.2011.7.753
References:
[1]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits,, Queueing Systems Theory Appl., 28 (1998), 7.  doi: 10.1023/A:1019182619288.  Google Scholar

[2]

B. D. Choi and B. Kim, Non-ergodicity criteria for denumerable continuous time Markov processes,, Operations Research Letters, 32 (2004), 574.  doi: 10.1016/j.orl.2004.03.001.  Google Scholar

[3]

J. G. Dai, On positive Harris recurrence of multiclass queueing network: A unified approach via fluid limit models,, Annals of Applied Probability, 5 (1995), 49.  doi: 10.1214/aoap/1177004828.  Google Scholar

[4]

J. G. Dai, A fluid-limit model criterion for instability of multiclass queueing networks,, Annals of Applied Probability, 6 (1996), 751.  doi: 10.1214/aoap/1034968225.  Google Scholar

[5]

J. G. Dai, J. J. Hasenbein and B. Kim, Stability of join-the-shortest-queue networks,, Queueing Systems, 57 (2007), 129.  doi: 10.1007/s11134-007-9046-5.  Google Scholar

[6]

G. I. Falin, A survey of retrial queues,, Queueing Systems Theory Appl., 7 (1990), 127.  doi: 10.1007/BF01158472.  Google Scholar

[7]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[8]

R. Foley and D. McDonald, Join the shortest queue: Stability and exact asymptotics,, Ann. Appl. Probab., 11 (2001), 569.  doi: 10.1214/aoap/1015345342.  Google Scholar

[9]

S. Foss and N. Chernova, On the stability of a partially accessible multi-station queue with state-dependent routing,, Queueing Systems Theory Appl., 29 (1998), 55.  doi: 10.1023/A:1019175812444.  Google Scholar

[10]

Q.-M. He, H. Li and Y. Q. Zhao, Ergodicity of the $BMAP$/$PH$/$s$/$s+K$ retrial queue PH-retrial times,, Queueing Systems Theory Appl., 35 (2000), 323.  doi: 10.1023/A:1019110631467.  Google Scholar

[11]

B. Kim and I. Lee, Tests for nonergodicity of denumerable continuous time Markov processes,, Computers and Mathematics with Applications, 55 (2008), 1310.  doi: 10.1016/j.camwa.2007.07.003.  Google Scholar

[12]

I. A. Kurkova, A load-balanced network with two servers,, Queueing Systems, 37 (2001), 379.  doi: 10.1023/A:1010841517511.  Google Scholar

[13]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, Performance analysis of optical burst switched networks with limited-range wavelength conversion, retransmission and burst segmentation,, Journal of the Operations Research Society of Japan, 52 (2009), 58.   Google Scholar

[14]

Yu. M. Sukhov and N. D. Vvedenskaya, Fast Jackson networks with dynamic routing,, Problems of Information Transmission, 38 (2002), 136.  doi: 10.1023/A:1020010710507.  Google Scholar

[15]

T. Yang and J. G. C. Templeton, A survey of retrial queues,, Queueing Systems Theory Appl., 2 (1987), 201.  doi: 10.1007/BF01158899.  Google Scholar

show all references

References:
[1]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits,, Queueing Systems Theory Appl., 28 (1998), 7.  doi: 10.1023/A:1019182619288.  Google Scholar

[2]

B. D. Choi and B. Kim, Non-ergodicity criteria for denumerable continuous time Markov processes,, Operations Research Letters, 32 (2004), 574.  doi: 10.1016/j.orl.2004.03.001.  Google Scholar

[3]

J. G. Dai, On positive Harris recurrence of multiclass queueing network: A unified approach via fluid limit models,, Annals of Applied Probability, 5 (1995), 49.  doi: 10.1214/aoap/1177004828.  Google Scholar

[4]

J. G. Dai, A fluid-limit model criterion for instability of multiclass queueing networks,, Annals of Applied Probability, 6 (1996), 751.  doi: 10.1214/aoap/1034968225.  Google Scholar

[5]

J. G. Dai, J. J. Hasenbein and B. Kim, Stability of join-the-shortest-queue networks,, Queueing Systems, 57 (2007), 129.  doi: 10.1007/s11134-007-9046-5.  Google Scholar

[6]

G. I. Falin, A survey of retrial queues,, Queueing Systems Theory Appl., 7 (1990), 127.  doi: 10.1007/BF01158472.  Google Scholar

[7]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[8]

R. Foley and D. McDonald, Join the shortest queue: Stability and exact asymptotics,, Ann. Appl. Probab., 11 (2001), 569.  doi: 10.1214/aoap/1015345342.  Google Scholar

[9]

S. Foss and N. Chernova, On the stability of a partially accessible multi-station queue with state-dependent routing,, Queueing Systems Theory Appl., 29 (1998), 55.  doi: 10.1023/A:1019175812444.  Google Scholar

[10]

Q.-M. He, H. Li and Y. Q. Zhao, Ergodicity of the $BMAP$/$PH$/$s$/$s+K$ retrial queue PH-retrial times,, Queueing Systems Theory Appl., 35 (2000), 323.  doi: 10.1023/A:1019110631467.  Google Scholar

[11]

B. Kim and I. Lee, Tests for nonergodicity of denumerable continuous time Markov processes,, Computers and Mathematics with Applications, 55 (2008), 1310.  doi: 10.1016/j.camwa.2007.07.003.  Google Scholar

[12]

I. A. Kurkova, A load-balanced network with two servers,, Queueing Systems, 37 (2001), 379.  doi: 10.1023/A:1010841517511.  Google Scholar

[13]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, Performance analysis of optical burst switched networks with limited-range wavelength conversion, retransmission and burst segmentation,, Journal of the Operations Research Society of Japan, 52 (2009), 58.   Google Scholar

[14]

Yu. M. Sukhov and N. D. Vvedenskaya, Fast Jackson networks with dynamic routing,, Problems of Information Transmission, 38 (2002), 136.  doi: 10.1023/A:1020010710507.  Google Scholar

[15]

T. Yang and J. G. C. Templeton, A survey of retrial queues,, Queueing Systems Theory Appl., 2 (1987), 201.  doi: 10.1007/BF01158899.  Google Scholar

[1]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[2]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[3]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[4]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[5]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[6]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[7]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[8]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[9]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[12]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[13]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[16]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[17]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[18]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[19]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[20]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]