- Previous Article
- JIMO Home
- This Issue
-
Next Article
Stability of a retrial queueing network with different classes of customers and restricted resource pooling
Frame-bound priority scheduling in discrete-time queueing systems
1. | SMACS Research Group, Ghent University, St.-Pietersnieuwstraat 41, 9000 Gent, Belgium, Belgium, Belgium, Belgium |
References:
[1] |
D. A. Bini, G. Latouche and B. Meini, "Numerical Methods for Structured Markov Chains,", Numerical Mathematics and Scientific Computation, (2005).
|
[2] |
H. Bruneel, Performance of Discrete-Time Queueing Systems,, Computers Operations Research, 20 (1993), 303.
doi: 10.1016/0305-0548(93)90006-5. |
[3] |
S. De Clercq, B. Steyaert and H. Bruneel, Analysis of a Multi-Class Discrete-time Queueing System under the Slot-Bound Priority rule,, Proceedings of the 6th St. Petersburg Workshop on Simulation, (2009), 827. Google Scholar |
[4] |
S. De Vuyst, S. Wittevrongel and H. Bruneel, A queueing discipline with place reservation,, Proceedings of the COST 279 Eleventh Management Committee Meeting (Ghent, (2004), 23. Google Scholar |
[5] |
H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral Analysis of $M$/$G$/$1$ and $G$/$M$/$1$ Type Markov chains,, Advances in Applied Probability, 28 (1996), 114.
doi: 10.2307/1427915. |
[6] |
R. G. Gallager, "Discrete Stochastic Processes,", Kluwer Academic Publishers, (1996). Google Scholar |
[7] |
S. Halfin, Batch Delays Versus Customer Delays,, The Bell System Technical Journal, 62 (1983), 2011. Google Scholar |
[8] |
L. Kleinrock, "Queueing Systems, Volume I: Theory,", Wiley, (1975). Google Scholar |
[9] |
V. Klimenok, On the modification of Rouche's theorem for queueing theory problems,, Queueing Systems, 38 (2001), 431.
doi: 10.1023/A:1010999928701. |
[10] |
K. Y. Liu, D. W. Petr, V. S. Frost, H. B. Zhu, C. Braun and W. L. Edwards, Design and analysis of a bandwidth management framework for ATM-based broadband ISDN,, IEEE Communications Magazine, 35 (1997), 138.
doi: 10.1109/35.592108. |
[11] |
M. F. Neuts, "Structured Stochastic Matrices of $M$/$G$/$1$ Type and Their Applications,", Probability: Pure and Applied, 5 (1989).
|
[12] |
I. Stavrakakis, Delay bounds on a queueing system with consistent priorities,, IEEE Transactions on Communications, 42 (1994), 615.
doi: 10.1109/TCOMM.1994.577089. |
[13] |
H. Takada and K. Kobayashi, Loss Systems with Multi-Thresholds on Network Calculus,, Proc. of Queueing Symposium, (2007), 241. Google Scholar |
[14] |
J. Walraevens, B. Steyaert and H. Bruneel, Performance analysis of the system contents in a discrete-time non-preemptive priority queue with general service times,, Belgian Journal of Operations Research, 40 (2000), 91.
|
[15] |
H. S. Wilf, "Generatingfunctionology,", 2nd edition, (1994).
|
show all references
References:
[1] |
D. A. Bini, G. Latouche and B. Meini, "Numerical Methods for Structured Markov Chains,", Numerical Mathematics and Scientific Computation, (2005).
|
[2] |
H. Bruneel, Performance of Discrete-Time Queueing Systems,, Computers Operations Research, 20 (1993), 303.
doi: 10.1016/0305-0548(93)90006-5. |
[3] |
S. De Clercq, B. Steyaert and H. Bruneel, Analysis of a Multi-Class Discrete-time Queueing System under the Slot-Bound Priority rule,, Proceedings of the 6th St. Petersburg Workshop on Simulation, (2009), 827. Google Scholar |
[4] |
S. De Vuyst, S. Wittevrongel and H. Bruneel, A queueing discipline with place reservation,, Proceedings of the COST 279 Eleventh Management Committee Meeting (Ghent, (2004), 23. Google Scholar |
[5] |
H. R. Gail, S. L. Hantler and B. A. Taylor, Spectral Analysis of $M$/$G$/$1$ and $G$/$M$/$1$ Type Markov chains,, Advances in Applied Probability, 28 (1996), 114.
doi: 10.2307/1427915. |
[6] |
R. G. Gallager, "Discrete Stochastic Processes,", Kluwer Academic Publishers, (1996). Google Scholar |
[7] |
S. Halfin, Batch Delays Versus Customer Delays,, The Bell System Technical Journal, 62 (1983), 2011. Google Scholar |
[8] |
L. Kleinrock, "Queueing Systems, Volume I: Theory,", Wiley, (1975). Google Scholar |
[9] |
V. Klimenok, On the modification of Rouche's theorem for queueing theory problems,, Queueing Systems, 38 (2001), 431.
doi: 10.1023/A:1010999928701. |
[10] |
K. Y. Liu, D. W. Petr, V. S. Frost, H. B. Zhu, C. Braun and W. L. Edwards, Design and analysis of a bandwidth management framework for ATM-based broadband ISDN,, IEEE Communications Magazine, 35 (1997), 138.
doi: 10.1109/35.592108. |
[11] |
M. F. Neuts, "Structured Stochastic Matrices of $M$/$G$/$1$ Type and Their Applications,", Probability: Pure and Applied, 5 (1989).
|
[12] |
I. Stavrakakis, Delay bounds on a queueing system with consistent priorities,, IEEE Transactions on Communications, 42 (1994), 615.
doi: 10.1109/TCOMM.1994.577089. |
[13] |
H. Takada and K. Kobayashi, Loss Systems with Multi-Thresholds on Network Calculus,, Proc. of Queueing Symposium, (2007), 241. Google Scholar |
[14] |
J. Walraevens, B. Steyaert and H. Bruneel, Performance analysis of the system contents in a discrete-time non-preemptive priority queue with general service times,, Belgian Journal of Operations Research, 40 (2000), 91.
|
[15] |
H. S. Wilf, "Generatingfunctionology,", 2nd edition, (1994).
|
[1] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[2] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[3] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[4] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[5] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[6] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[7] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[8] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[9] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[10] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[11] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[12] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[13] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[14] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]