October  2011, 7(4): 789-809. doi: 10.3934/jimo.2011.7.789

Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions

1. 

Equipe de Recherhce en Informatique et Mathématiques (ERIM), University of New Caledonia (France), B.P. R4, F98851, Nouméa Cedex, New Caledonia (French), New Caledonia (French)

Received  October 2010 Revised  May 2011 Published  August 2011

We present explicit optimality conditions for a nonsmooth functional defined over the (properly or weakly) Pareto set associated with a multi-objective linear-quadratic control problem. This problem is very difficult even in a finite dimensional setting , i.e. when, instead of a control problem, we deal with a mathematical programming problem. Amongst various applications, our problem may be considered as a response for a decision maker when he has to choose a solution over the solution set of the grand coalition $p$-player cooperative differential game.
Citation: Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789
References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory," Systems & Control: Foundations & Applications, Birkhäuser Verlag, Basel, 2003. doi: 10.1007/978-3-0348-8081-7_9.

[2]

L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms, Oper. Res. Lett., 19 (1996), 117-128. doi: 10.1016/0167-6377(96)00022-3.

[3]

J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.

[4]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique, J. Ind. Manag. Optim., 4 (2008), 697-712.

[5]

H. P. Benson, Optimization over the efficient set, J. Math. Anal. Appl., 98 (1984), 562-580. doi: 10.1016/0022-247X(84)90269-5.

[6]

H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set, J. Optim. Theory Appl., 73 (1992), 47-64. doi: 10.1007/BF00940077.

[7]

S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set, J. Math. Anal. Appl., 173 (1993), 523-541.

[8]

S. Bolintineanu, Minimization of a quasi-concave function over an efficient set, Math. Programming, 61 (1993), 89-110. doi: 10.1007/BF01582141.

[9]

S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set, J. Optim. Theory Appl., 78 (1993), 579-598. doi: 10.1007/BF00939883.

[10]

S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient, (French) [Penalization in optimization over the weakly efficient set], RAIRO Rech. Opér., 31 (1997), 295-310.

[11]

H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems, J. Optim. Theory Appl., 147 (2010), 93-112. doi: 10.1007/s10957-010-9709-y.

[12]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, J. Optim. Theory Appl., 131 (2006), 365-382. doi: 10.1007/s10957-006-9150-4.

[13]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem, Pac. J. Optim., 2 (2006), 447-467.

[14]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

[15]

B. D. Craven, Aspects of multicriteria optimization, in "Recent Developments in Mathematical Programming" (ed. S. Kumar), Gordon and Breach Science Publishers, Philadelphia, (1991), 93-100.

[16]

J. P. Dauer, Optimization over the efficient set using an active constraint approach, Z. Oper. Res., 35 (1991), 185-195.

[17]

J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set, J. Global Optim., 7 (1995), 261-277. doi: 10.1007/BF01279451.

[18]

G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization," Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-79159-1.

[19]

J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games, SIAM J. Control Optim., 48 (2010), 3859-3881. doi: 10.1137/080726227.

[20]

J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set, in "Generalized Convexity" (Pécs, 1992), Lecture notes in Economics and Mathematical System, 405, Springer-Verlag, Berlin, (1994), 374-385.

[21]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces," CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17, Springer-Verlag, New York, 2003.

[22]

R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set, European J. Oper. Res., 117 (1999), 239-252.

[23]

R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming, J. Optim. Theory Appl., 134 (2007), 433-443. doi: 10.1007/s10957-007-9219-8.

[24]

J. Jahn, "Vector Optimization: Theory, Applications, and Extensions," Springer-Verlag, Berlin, 2004.

[25]

J. Jahn, "Introduction to the Theory of Nonlinear Optimization," 3rd edition, Springer, Berlin, 2007.

[26]

Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration, Math. Comput. Modelling, 26 (1997), 49-58. doi: 10.1016/S0895-7177(97)00239-2.

[27]

D. T. Lųc, "Theory of Vector Optimization," Lecture Notes in Economics and Mathematical Systems, 319, Springer-Verlag, Berlin, 1989.

[28]

K. Miettinen, "Nonlinear Multiobjective Optimization," International Series in Operations Research & Management Science, 12, Kluwer Academic Publishers, Boston, MA, 1999. doi: 10.1007/978-1-4615-5563-6.

[29]

J. Philip, Algorithms for the vector maximization problem, Math. Programming, 2 (1972), 207-229. doi: 10.1007/BF01584543.

[30]

T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, New Jersey, 1970.

[31]

K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems, IMA J. Math. Control Inform., 15 (1998), 303-315. doi: 10.1093/imamci/15.3.303.

[32]

Y. Yamamoto, Optimization over the efficient set: Overview, J. Global Optim., 22 (2002), 285-317. doi: 10.1023/A:1013875600711.

show all references

References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory," Systems & Control: Foundations & Applications, Birkhäuser Verlag, Basel, 2003. doi: 10.1007/978-3-0348-8081-7_9.

[2]

L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms, Oper. Res. Lett., 19 (1996), 117-128. doi: 10.1016/0167-6377(96)00022-3.

[3]

J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.

[4]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique, J. Ind. Manag. Optim., 4 (2008), 697-712.

[5]

H. P. Benson, Optimization over the efficient set, J. Math. Anal. Appl., 98 (1984), 562-580. doi: 10.1016/0022-247X(84)90269-5.

[6]

H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set, J. Optim. Theory Appl., 73 (1992), 47-64. doi: 10.1007/BF00940077.

[7]

S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set, J. Math. Anal. Appl., 173 (1993), 523-541.

[8]

S. Bolintineanu, Minimization of a quasi-concave function over an efficient set, Math. Programming, 61 (1993), 89-110. doi: 10.1007/BF01582141.

[9]

S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set, J. Optim. Theory Appl., 78 (1993), 579-598. doi: 10.1007/BF00939883.

[10]

S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient, (French) [Penalization in optimization over the weakly efficient set], RAIRO Rech. Opér., 31 (1997), 295-310.

[11]

H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems, J. Optim. Theory Appl., 147 (2010), 93-112. doi: 10.1007/s10957-010-9709-y.

[12]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach, J. Optim. Theory Appl., 131 (2006), 365-382. doi: 10.1007/s10957-006-9150-4.

[13]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem, Pac. J. Optim., 2 (2006), 447-467.

[14]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

[15]

B. D. Craven, Aspects of multicriteria optimization, in "Recent Developments in Mathematical Programming" (ed. S. Kumar), Gordon and Breach Science Publishers, Philadelphia, (1991), 93-100.

[16]

J. P. Dauer, Optimization over the efficient set using an active constraint approach, Z. Oper. Res., 35 (1991), 185-195.

[17]

J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set, J. Global Optim., 7 (1995), 261-277. doi: 10.1007/BF01279451.

[18]

G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization," Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-79159-1.

[19]

J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games, SIAM J. Control Optim., 48 (2010), 3859-3881. doi: 10.1137/080726227.

[20]

J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set, in "Generalized Convexity" (Pécs, 1992), Lecture notes in Economics and Mathematical System, 405, Springer-Verlag, Berlin, (1994), 374-385.

[21]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces," CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17, Springer-Verlag, New York, 2003.

[22]

R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set, European J. Oper. Res., 117 (1999), 239-252.

[23]

R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming, J. Optim. Theory Appl., 134 (2007), 433-443. doi: 10.1007/s10957-007-9219-8.

[24]

J. Jahn, "Vector Optimization: Theory, Applications, and Extensions," Springer-Verlag, Berlin, 2004.

[25]

J. Jahn, "Introduction to the Theory of Nonlinear Optimization," 3rd edition, Springer, Berlin, 2007.

[26]

Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration, Math. Comput. Modelling, 26 (1997), 49-58. doi: 10.1016/S0895-7177(97)00239-2.

[27]

D. T. Lųc, "Theory of Vector Optimization," Lecture Notes in Economics and Mathematical Systems, 319, Springer-Verlag, Berlin, 1989.

[28]

K. Miettinen, "Nonlinear Multiobjective Optimization," International Series in Operations Research & Management Science, 12, Kluwer Academic Publishers, Boston, MA, 1999. doi: 10.1007/978-1-4615-5563-6.

[29]

J. Philip, Algorithms for the vector maximization problem, Math. Programming, 2 (1972), 207-229. doi: 10.1007/BF01584543.

[30]

T. Rockafellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, New Jersey, 1970.

[31]

K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems, IMA J. Math. Control Inform., 15 (1998), 303-315. doi: 10.1093/imamci/15.3.303.

[32]

Y. Yamamoto, Optimization over the efficient set: Overview, J. Global Optim., 22 (2002), 285-317. doi: 10.1023/A:1013875600711.

[1]

Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial and Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747

[2]

Nguyen Duc Vuong, Tran Ngoc Thang. Optimizing over Pareto set of semistrictly quasiconcave vector maximization and application to stochastic portfolio selection. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022029

[3]

Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001

[4]

Adriel Cheng, Cheng-Chew Lim. Optimizing system-on-chip verifications with multi-objective genetic evolutionary algorithms. Journal of Industrial and Management Optimization, 2014, 10 (2) : 383-396. doi: 10.3934/jimo.2014.10.383

[5]

Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088

[6]

Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021208

[7]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[8]

Ankan Bhaumik, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-objective linguistic-neutrosophic matrix game and its applications to tourism management. Journal of Dynamics and Games, 2021, 8 (2) : 101-118. doi: 10.3934/jdg.2020031

[9]

Chaabane Djamal, Pirlot Marc. A method for optimizing over the integer efficient set. Journal of Industrial and Management Optimization, 2010, 6 (4) : 811-823. doi: 10.3934/jimo.2010.6.811

[10]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177

[11]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

[12]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[13]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[14]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[15]

Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021169

[16]

Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021179

[17]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051

[18]

Nguyen Thi Toan. Generalized Clarke epiderivatives of the extremum multifunction to a multi-objective parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2705-2720. doi: 10.3934/jimo.2021088

[19]

Tone-Yau Huang, Tamaki Tanaka. Optimality and duality for complex multi-objective programming. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 121-134. doi: 10.3934/naco.2021055

[20]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]