October  2011, 7(4): 789-809. doi: 10.3934/jimo.2011.7.789

Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions

1. 

Equipe de Recherhce en Informatique et Mathématiques (ERIM), University of New Caledonia (France), B.P. R4, F98851, Nouméa Cedex, New Caledonia (French), New Caledonia (French)

Received  October 2010 Revised  May 2011 Published  August 2011

We present explicit optimality conditions for a nonsmooth functional defined over the (properly or weakly) Pareto set associated with a multi-objective linear-quadratic control problem. This problem is very difficult even in a finite dimensional setting , i.e. when, instead of a control problem, we deal with a mathematical programming problem. Amongst various applications, our problem may be considered as a response for a decision maker when he has to choose a solution over the solution set of the grand coalition $p$-player cooperative differential game.
Citation: Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789
References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003).  doi: 10.1007/978-3-0348-8081-7_9.  Google Scholar

[2]

L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117.  doi: 10.1016/0167-6377(96)00022-3.  Google Scholar

[3]

J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).   Google Scholar

[4]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.   Google Scholar

[5]

H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562.  doi: 10.1016/0022-247X(84)90269-5.  Google Scholar

[6]

H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47.  doi: 10.1007/BF00940077.  Google Scholar

[7]

S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.   Google Scholar

[8]

S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89.  doi: 10.1007/BF01582141.  Google Scholar

[9]

S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579.  doi: 10.1007/BF00939883.  Google Scholar

[10]

S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.   Google Scholar

[11]

H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93.  doi: 10.1007/s10957-010-9709-y.  Google Scholar

[12]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[13]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.   Google Scholar

[14]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).   Google Scholar

[15]

B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93.   Google Scholar

[16]

J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.   Google Scholar

[17]

J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261.  doi: 10.1007/BF01279451.  Google Scholar

[18]

G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008).  doi: 10.1007/978-3-540-79159-1.  Google Scholar

[19]

J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859.  doi: 10.1137/080726227.  Google Scholar

[20]

J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.   Google Scholar

[21]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).   Google Scholar

[22]

R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239.   Google Scholar

[23]

R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433.  doi: 10.1007/s10957-007-9219-8.  Google Scholar

[24]

J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).   Google Scholar

[25]

J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).   Google Scholar

[26]

Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49.  doi: 10.1016/S0895-7177(97)00239-2.  Google Scholar

[27]

D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).   Google Scholar

[28]

K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999).  doi: 10.1007/978-1-4615-5563-6.  Google Scholar

[29]

J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207.  doi: 10.1007/BF01584543.  Google Scholar

[30]

T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[31]

K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303.  doi: 10.1093/imamci/15.3.303.  Google Scholar

[32]

Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285.  doi: 10.1023/A:1013875600711.  Google Scholar

show all references

References:
[1]

H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003).  doi: 10.1007/978-3-0348-8081-7_9.  Google Scholar

[2]

L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117.  doi: 10.1016/0167-6377(96)00022-3.  Google Scholar

[3]

J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).   Google Scholar

[4]

V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.   Google Scholar

[5]

H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562.  doi: 10.1016/0022-247X(84)90269-5.  Google Scholar

[6]

H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47.  doi: 10.1007/BF00940077.  Google Scholar

[7]

S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.   Google Scholar

[8]

S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89.  doi: 10.1007/BF01582141.  Google Scholar

[9]

S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579.  doi: 10.1007/BF00939883.  Google Scholar

[10]

S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.   Google Scholar

[11]

H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93.  doi: 10.1007/s10957-010-9709-y.  Google Scholar

[12]

H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365.  doi: 10.1007/s10957-006-9150-4.  Google Scholar

[13]

H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.   Google Scholar

[14]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).   Google Scholar

[15]

B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93.   Google Scholar

[16]

J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.   Google Scholar

[17]

J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261.  doi: 10.1007/BF01279451.  Google Scholar

[18]

G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008).  doi: 10.1007/978-3-540-79159-1.  Google Scholar

[19]

J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859.  doi: 10.1137/080726227.  Google Scholar

[20]

J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.   Google Scholar

[21]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).   Google Scholar

[22]

R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239.   Google Scholar

[23]

R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433.  doi: 10.1007/s10957-007-9219-8.  Google Scholar

[24]

J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).   Google Scholar

[25]

J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).   Google Scholar

[26]

Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49.  doi: 10.1016/S0895-7177(97)00239-2.  Google Scholar

[27]

D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).   Google Scholar

[28]

K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999).  doi: 10.1007/978-1-4615-5563-6.  Google Scholar

[29]

J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207.  doi: 10.1007/BF01584543.  Google Scholar

[30]

T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[31]

K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303.  doi: 10.1093/imamci/15.3.303.  Google Scholar

[32]

Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285.  doi: 10.1023/A:1013875600711.  Google Scholar

[1]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[2]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[3]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[7]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[8]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[9]

Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021027

[10]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[13]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[14]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[15]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[16]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[17]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[18]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[19]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[20]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]