-
Previous Article
Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs
- JIMO Home
- This Issue
- Next Article
Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions
1. | Equipe de Recherhce en Informatique et Mathématiques (ERIM), University of New Caledonia (France), B.P. R4, F98851, Nouméa Cedex, New Caledonia (French), New Caledonia (French) |
References:
[1] |
H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003).
doi: 10.1007/978-3-0348-8081-7_9. |
[2] |
L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117.
doi: 10.1016/0167-6377(96)00022-3. |
[3] |
J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).
|
[4] |
V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.
|
[5] |
H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562.
doi: 10.1016/0022-247X(84)90269-5. |
[6] |
H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47.
doi: 10.1007/BF00940077. |
[7] |
S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.
|
[8] |
S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89.
doi: 10.1007/BF01582141. |
[9] |
S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579.
doi: 10.1007/BF00939883. |
[10] |
S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.
|
[11] |
H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93.
doi: 10.1007/s10957-010-9709-y. |
[12] |
H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365.
doi: 10.1007/s10957-006-9150-4. |
[13] |
H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.
|
[14] |
F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).
|
[15] |
B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93. Google Scholar |
[16] |
J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.
|
[17] |
J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261.
doi: 10.1007/BF01279451. |
[18] |
G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008).
doi: 10.1007/978-3-540-79159-1. |
[19] |
J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859.
doi: 10.1137/080726227. |
[20] |
J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.
|
[21] |
A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).
|
[22] |
R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239. Google Scholar |
[23] |
R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433.
doi: 10.1007/s10957-007-9219-8. |
[24] |
J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).
|
[25] |
J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).
|
[26] |
Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49.
doi: 10.1016/S0895-7177(97)00239-2. |
[27] |
D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).
|
[28] |
K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999).
doi: 10.1007/978-1-4615-5563-6. |
[29] |
J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207.
doi: 10.1007/BF01584543. |
[30] |
T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).
|
[31] |
K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303.
doi: 10.1093/imamci/15.3.303. |
[32] |
Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285.
doi: 10.1023/A:1013875600711. |
show all references
References:
[1] |
H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, "Matrix Riccati Equations in Control and Systems Theory,", Systems & Control: Foundations & Applications, (2003).
doi: 10.1007/978-3-0348-8081-7_9. |
[2] |
L. T. H. An, P. D. Tao and L. D. Muu, Numerical solution for optimization over the efficient set by d.c. optimization algorithms,, Oper. Res. Lett., 19 (1996), 117.
doi: 10.1016/0167-6377(96)00022-3. |
[3] |
J.-P. Aubin and I. Ekeland, "Applied Nonlinear Analysis,", Pure and Applied Mathematics (New York), (1984).
|
[4] |
V. Azhmyakov, An approach to controlled mechanical systems based on the multiobjective optimization technique,, J. Ind. Manag. Optim., 4 (2008), 697.
|
[5] |
H. P. Benson, Optimization over the efficient set,, J. Math. Anal. Appl., 98 (1984), 562.
doi: 10.1016/0022-247X(84)90269-5. |
[6] |
H. P. Benson, A finite, nonadjacent extreme point search algorithm for optimization over the efficient set,, J. Optim. Theory Appl., 73 (1992), 47.
doi: 10.1007/BF00940077. |
[7] |
S. Bolintineanu, Optimality conditions for minimization over the (weakly or properly) efficient set,, J. Math. Anal. Appl., 173 (1993), 523.
|
[8] |
S. Bolintineanu, Minimization of a quasi-concave function over an efficient set,, Math. Programming, 61 (1993), 89.
doi: 10.1007/BF01582141. |
[9] |
S. Bolintineanu, Necessary conditions for nonlinear suboptimization over the weakly-efficient set,, J. Optim. Theory Appl., 78 (1993), 579.
doi: 10.1007/BF00939883. |
[10] |
S. Bolintinéanu and M. El Maghri, Pénalisation dans l'optimisation sur l'ensemble faiblement efficient,, (French) [Penalization in optimization over the weakly efficient set], 31 (1997), 295.
|
[11] |
H. Bonnel and C. Y. Kaya, Optimization over the efficient set of multi-objective convex optimal control problems,, J. Optim. Theory Appl., 147 (2010), 93.
doi: 10.1007/s10957-010-9709-y. |
[12] |
H. Bonnel and J. Morgan, Semivectorial bilevel optimization problem: Penalty approach,, J. Optim. Theory Appl., 131 (2006), 365.
doi: 10.1007/s10957-006-9150-4. |
[13] |
H. Bonnel, Optimality conditions for the semivectorial bilevel optimization problem,, Pac. J. Optim., 2 (2006), 447.
|
[14] |
F. H. Clarke, "Optimization and Nonsmooth Analysis,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1983).
|
[15] |
B. D. Craven, Aspects of multicriteria optimization,, in, (1991), 93. Google Scholar |
[16] |
J. P. Dauer, Optimization over the efficient set using an active constraint approach,, Z. Oper. Res., 35 (1991), 185.
|
[17] |
J. P. Dauer and T. A. Fosnaugh, Optimization over the efficient set,, J. Global Optim., 7 (1995), 261.
doi: 10.1007/BF01279451. |
[18] |
G. Eichfelder, "Adaptive Scalarization Methods in Multiobjective Optimization,", Springer-Verlag, (2008).
doi: 10.1007/978-3-540-79159-1. |
[19] |
J. Engwerda, Necessary and sufficient conditions for Pareto optimal solution of cooperative differential games,, SIAM J. Control Optim., 48 (2010), 3859.
doi: 10.1137/080726227. |
[20] |
J. Fülöp, A cutting plane algorithm for linear optimization over the efficient set,, in, 405 (1994), 374.
|
[21] |
A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 17 (2003).
|
[22] |
R. Horst and N. V. Thoai, Maximizing a concave function over the efficient or weakly-efficient set,, European J. Oper. Res., 117 (1999), 239. Google Scholar |
[23] |
R. Horst, N. V. Thoai, Y. Yamamoto and D. Zenke, On optimization over the efficient set in linear multicriteria programming,, J. Optim. Theory Appl., 134 (2007), 433.
doi: 10.1007/s10957-007-9219-8. |
[24] |
J. Jahn, "Vector Optimization: Theory, Applications, and Extensions,", Springer-Verlag, (2004).
|
[25] |
J. Jahn, "Introduction to the Theory of Nonlinear Optimization,", 3rd edition, (2007).
|
[26] |
Y. Liu, K. L. Teo and R. P. Agarwal, A general approach to nonlinear multiple control problems with perturbation consideration,, Math. Comput. Modelling, 26 (1997), 49.
doi: 10.1016/S0895-7177(97)00239-2. |
[27] |
D. T. Lųc, "Theory of Vector Optimization,", Lecture Notes in Economics and Mathematical Systems, 319 (1989).
|
[28] |
K. Miettinen, "Nonlinear Multiobjective Optimization,", International Series in Operations Research & Management Science, 12 (1999).
doi: 10.1007/978-1-4615-5563-6. |
[29] |
J. Philip, Algorithms for the vector maximization problem,, Math. Programming, 2 (1972), 207.
doi: 10.1007/BF01584543. |
[30] |
T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).
|
[31] |
K. L. Teo, D. Li and Y. Liu, Perturbation feedback control in general multiple linear-quadratic control problems,, IMA J. Math. Control Inform., 15 (1998), 303.
doi: 10.1093/imamci/15.3.303. |
[32] |
Y. Yamamoto, Optimization over the efficient set: Overview,, J. Global Optim., 22 (2002), 285.
doi: 10.1023/A:1013875600711. |
[1] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[2] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[3] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[6] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[7] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[8] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[9] |
Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021027 |
[10] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[11] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[12] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[13] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[14] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[15] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[16] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[17] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[18] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[19] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[20] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]