January  2011, 7(1): 79-85. doi: 10.3934/jimo.2011.7.79

State estimation for discrete linear systems with observation time-delayed noise

1. 

School of Control Science and Engineering, Shandong University, Jinan 250000, China

2. 

Department of Information Science and Technology, Taishan University, Taian 271021, China

3. 

School of Mathematics, Shandong University, Jinan 250000, China

Received  July 2010 Revised  September 2010 Published  January 2011

State estimation problem is discussed for discrete-time systems with delays in measurement noise sequence, which is usually seen in network control and geophysical prospecting systems. An optimal recursive filter is derived via state augmentation. Dimensions of the optimal filter just are the sum of dimensions of state and observation vector. Therefore, they are not related to the size of delay. Besides, a sub-optimal recursive filter with same dimension as the original state is designed. The sub-optimal filter realizes instant optimization at current time. One example shows the effectiveness of the proposed approach.
Citation: Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79
References:
[1]

B. D. O. Anderson and J. B. Moore, "Optimal Filtering,", Prentice-Hall, (1979).   Google Scholar

[2]

M. Basin, J. Rodriguez-Gonzalez and R. Martinez Zúniga, Optimal filtering for linear state delay systems,, IEEE Trans. on Automatic Control, 50 (2005), 684.  doi: 10.1109/TAC.2005.846599.  Google Scholar

[3]

A. Calzolari, P. Florchinger and G. Nappo, Nonlinear filtering for markov systems with delayed observations,, Int. J. Appl. Math. Comput. Sci., 19 (2009), 49.  doi: 10.2478/v10006-009-0004-8.  Google Scholar

[4]

Y. Chocheyras, Near field three dimensional time delay and doppler target motion analysis,, in, (1989), 2649.  doi: 10.1109/ICASSP.1989.267012.  Google Scholar

[5]

T. Kailath, A. H. Sayed, and B. Hassibi, "Linear Estimation",, Prentice-Hall, (1999).   Google Scholar

[6]

R. E. Kalman, A new approach to linear filtering and prediction problems,, Trans. ASME, 82 (1960), 35.   Google Scholar

[7]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory,, Transactions of the ASME-Journal of Basic Engineering, 83 (1961), 95.   Google Scholar

[8]

H. Kwakernaak, Optimal filtering in linear systems with time delays,, IEEE Trans. on Automatic Control, 12 (1967), 169.  doi: 10.1109/TAC.1967.1098541.  Google Scholar

[9]

X. Lu, H. S. Zhang, W. Wang and K. L. Teo, Kalman filtering for multiple time-delay systems,, Automatica, 41 (2005), 1455.  doi: 10.1016/j.automatica.2005.03.018.  Google Scholar

[10]

D. MacMillan, J. Bohm, M. Gipson, R. Haas, A. Niell, T. Nilsson, A. Pany, B. Petrachenko and J. Wresnik, Simulation analysis of the geodetic performance of the future IVS VLBI2010 system,, in, (2008).   Google Scholar

[11]

G. A. Medrano-Cerda, Filtering for linear system involving time delays in the noise process,, IEEE Trans. on Automatic Control, 28 (1983), 801.  doi: 10.1109/TAC.1983.1103318.  Google Scholar

[12]

C. L. Su and C. N. Lu, Interconnected network state estimation using randomly delayed measurements,, IEEE Trans. on Power Systems, 16 (2001), 870.  doi: 10.1109/59.962439.  Google Scholar

[13]

A. Subramanian and A. H. Sayed, Multiobjective filter design for uncertain stochastic time-delay systems,, IEEE Trans. on Automatic Control, 49 (2004), 149.  doi: 10.1109/TAC.2003.821422.  Google Scholar

[14]

S. L. Sun, Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts,, Signal Processing, 89 (2009), 1457.  doi: 10.1016/j.sigpro.2009.02.002.  Google Scholar

[15]

Z. Wang, D. W. C. Ho and X. Liu, Robust filtering underrandomly varying sensor delay with variance constraints,, IEEE Trans. on Circuits and Systtems II: Express Briefs, 51 (2004), 320.  doi: 10.1109/TCSII.2004.829572.  Google Scholar

[16]

E. Yaz and A. Ray, Linear unbiased state estimation under randomly varying bounded sensor delay,, Applied Mathematics Letters, 11 (1998), 27.  doi: 10.1016/S0893-9659(98)00051-2.  Google Scholar

[17]

H. S. Zhang, X. Lu, and D. Z. Cheng, Optimal estimation for continuous-time systems with delayed measurements,, IEEE Trans. on Automatic Control, 51 (2006), 823.  doi: 10.1109/TAC.2006.874983.  Google Scholar

[18]

H. G. Zhao, H. S. Zhang and C. H. Zhang, Optimal filtering for linear discrete-time systems with single delayed measurement,, Int. J. of Control, 6 (2008), 378.   Google Scholar

show all references

References:
[1]

B. D. O. Anderson and J. B. Moore, "Optimal Filtering,", Prentice-Hall, (1979).   Google Scholar

[2]

M. Basin, J. Rodriguez-Gonzalez and R. Martinez Zúniga, Optimal filtering for linear state delay systems,, IEEE Trans. on Automatic Control, 50 (2005), 684.  doi: 10.1109/TAC.2005.846599.  Google Scholar

[3]

A. Calzolari, P. Florchinger and G. Nappo, Nonlinear filtering for markov systems with delayed observations,, Int. J. Appl. Math. Comput. Sci., 19 (2009), 49.  doi: 10.2478/v10006-009-0004-8.  Google Scholar

[4]

Y. Chocheyras, Near field three dimensional time delay and doppler target motion analysis,, in, (1989), 2649.  doi: 10.1109/ICASSP.1989.267012.  Google Scholar

[5]

T. Kailath, A. H. Sayed, and B. Hassibi, "Linear Estimation",, Prentice-Hall, (1999).   Google Scholar

[6]

R. E. Kalman, A new approach to linear filtering and prediction problems,, Trans. ASME, 82 (1960), 35.   Google Scholar

[7]

R. E. Kalman and R. S. Bucy, New results in linear filtering and prediction theory,, Transactions of the ASME-Journal of Basic Engineering, 83 (1961), 95.   Google Scholar

[8]

H. Kwakernaak, Optimal filtering in linear systems with time delays,, IEEE Trans. on Automatic Control, 12 (1967), 169.  doi: 10.1109/TAC.1967.1098541.  Google Scholar

[9]

X. Lu, H. S. Zhang, W. Wang and K. L. Teo, Kalman filtering for multiple time-delay systems,, Automatica, 41 (2005), 1455.  doi: 10.1016/j.automatica.2005.03.018.  Google Scholar

[10]

D. MacMillan, J. Bohm, M. Gipson, R. Haas, A. Niell, T. Nilsson, A. Pany, B. Petrachenko and J. Wresnik, Simulation analysis of the geodetic performance of the future IVS VLBI2010 system,, in, (2008).   Google Scholar

[11]

G. A. Medrano-Cerda, Filtering for linear system involving time delays in the noise process,, IEEE Trans. on Automatic Control, 28 (1983), 801.  doi: 10.1109/TAC.1983.1103318.  Google Scholar

[12]

C. L. Su and C. N. Lu, Interconnected network state estimation using randomly delayed measurements,, IEEE Trans. on Power Systems, 16 (2001), 870.  doi: 10.1109/59.962439.  Google Scholar

[13]

A. Subramanian and A. H. Sayed, Multiobjective filter design for uncertain stochastic time-delay systems,, IEEE Trans. on Automatic Control, 49 (2004), 149.  doi: 10.1109/TAC.2003.821422.  Google Scholar

[14]

S. L. Sun, Linear minimum variance estimators for systems with bounded random measurement delays and packet dropouts,, Signal Processing, 89 (2009), 1457.  doi: 10.1016/j.sigpro.2009.02.002.  Google Scholar

[15]

Z. Wang, D. W. C. Ho and X. Liu, Robust filtering underrandomly varying sensor delay with variance constraints,, IEEE Trans. on Circuits and Systtems II: Express Briefs, 51 (2004), 320.  doi: 10.1109/TCSII.2004.829572.  Google Scholar

[16]

E. Yaz and A. Ray, Linear unbiased state estimation under randomly varying bounded sensor delay,, Applied Mathematics Letters, 11 (1998), 27.  doi: 10.1016/S0893-9659(98)00051-2.  Google Scholar

[17]

H. S. Zhang, X. Lu, and D. Z. Cheng, Optimal estimation for continuous-time systems with delayed measurements,, IEEE Trans. on Automatic Control, 51 (2006), 823.  doi: 10.1109/TAC.2006.874983.  Google Scholar

[18]

H. G. Zhao, H. S. Zhang and C. H. Zhang, Optimal filtering for linear discrete-time systems with single delayed measurement,, Int. J. of Control, 6 (2008), 378.   Google Scholar

[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[3]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[6]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[7]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[8]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[9]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[10]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[11]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[12]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[13]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[16]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[17]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]