October  2011, 7(4): 849-874. doi: 10.3934/jimo.2011.7.849

Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums

1. 

Department of Mathematics, Soochow University, Suzhou, 215006, China

Received  May 2010 Revised  May 2011 Published  August 2011

In this paper, we discuss a nonstandard renewal risk model, where the price process of the investment portfolio is modelled as a geometric Lévy process, the claim sizes and premium sizes form sequences of identically distributed and upper-tail independent random variables, respectively, the claim size and its corresponding inter-claim time satisfy a certain dependence structure described via a conditional tail probability of the claim size given the inter-claim time before the claim occurs, and there is a similar dependence structure between the premium size and the inter-arrival time before the premium is paid. When the claim-size distribution belongs to the extended-regular-varying class, we obtain a uniform tail asymptotics for stochastically discounted aggregate claims. Furthermore, assuming that the tail of the premium-size distribution is lighter than that of the claim-size distribution, the uniform estimates for the finite- and infinite-time ruin probabilities are presented respectively.
Citation: Yinghua Dong, Yuebao Wang. Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums. Journal of Industrial & Management Optimization, 2011, 7 (4) : 849-874. doi: 10.3934/jimo.2011.7.849
References:
[1]

H. Albrecher and O. J. Boxma, A ruin model with dependence between claim sizes and claim intervals,, Insurance Math. Econom., 35 (2004), 245.  doi: 10.1016/j.insmatheco.2003.09.009.  Google Scholar

[2]

H. Albrecher and J. L. Teugels, Exponential behavior in the presence of dependence in risk theory,, J. App. Probab., 43 (2006), 257.  doi: 10.1239/jap/1143936258.  Google Scholar

[3]

A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., 2010 (): 93.  doi: 10.1080/03461230802700897.  Google Scholar

[4]

A. L. Badescu, E. C. K. Cheung and D. Landriault, Dependent risk models with bivariate phase-type distributions,, J. Appl. Probab., 46 (2009), 113.  doi: 10.1239/jap/1238592120.  Google Scholar

[5]

R. Biard, C. Lefévre and S. Loisel, Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationary assumptions are relaxed,, Insurance Math. Econom., 43 (2008), 412.  doi: 10.1016/j.insmatheco.2008.08.004.  Google Scholar

[6]

N. H. Bingham, C. M. Goldie and J. L. Teugels, "Regular Variation,", Encyclopedia of Mathematics and its Applications, 27 (1987).   Google Scholar

[7]

A. V. Boĭkov, The Cramer-Lundberg model with stochastic premiums,, Theory Probab. Appl., 47 (2003), 489.  doi: 10.1137/S0040585X9797987.  Google Scholar

[8]

M. Boudreault, H. Cossette, D. Landriault and E. Marceau, On a risk model with dependence between interclaim arrivals and claim sizes,, Scand. Actuar. J., 5 (2006), 265.  doi: 10.1080/03461230600992266.  Google Scholar

[9]

R. J. Boucherie, O. J. Boxma and K. Sigman, A note on negative customers, GI/G/I workload, and risk processes,, Prob. Eng. Inf. Sci., 11 (1997), 305.  doi: 10.1017/S0269964800004848.  Google Scholar

[10]

L. Breiman, On some limit theorms similar to the arc-sin law,, Teor. Verojatnost. i Primenen, 10 (1965), 323.  doi: 10.1137/1110037.  Google Scholar

[11]

D. B. H. Cline, Intermediate regular and $\Pi$ variation,, Proc. London Math. Soc., 68 (1994), 594.  doi: 10.1112/plms/s3-68.3.594.  Google Scholar

[12]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[13]

R. Cont and P. Tankov, "Financial Modelling with Jump Processes,", Chapman & Hall/CRC Financial Mathematics Series, (2004).   Google Scholar

[14]

H. Cossette, E. Marceau and F. Marri, On the compound Poisson risk model with dependence based on a generalized Falie-Gumbel-Morgenstern copula,, Insurance Math. Econom., 43 (2008), 444.  doi: 10.1016/j.insmatheco.2008.08.009.  Google Scholar

[15]

Q. Gao and Y. Wang, Randomly weighted sums with dominantly varying-tailed increments and applications to risk theory,, J. Korean Stat. Soc., 39 (2010), 305.  doi: 10.1016/j.jkss.2010.02.004.  Google Scholar

[16]

C. C. Heyde and D. Wang, Finite-time ruin probaility with an exponential Lévy process investment return and heavy-tailed claims,, Adv. App. Probab., 41 (2009), 206.  doi: 10.1239/aap/1240319582.  Google Scholar

[17]

V. Kalashnikov and R. Norberg, Power tailed ruin probabilities in the presence of risky investments,, Stochastic Proc. Appl., 98 (2002), 211.  doi: 10.1016/S0304-4149(01)00148-X.  Google Scholar

[18]

C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential Lévy investment,, Insurance Math. Econom., 42 (2008), 560.   Google Scholar

[19]

S. Kotz, N. Balakrishnan and N. L. Johnson, "Continuous Multivariate Distribution. Vol. I. Models and Applications,", 2nd edition, (2000).   Google Scholar

[20]

E. L. Lehmann, Some concepts of dependence,, Ann. Math. Statist., 37 (1966), 1137.  doi: 10.1214/aoms/1177699260.  Google Scholar

[21]

J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Probab., 42 (2010), 1126.  doi: 10.1239/aap/1293113154.  Google Scholar

[22]

R. B. Nelsen, "An Introduction to Copulas,", 2nd edition, (2006).   Google Scholar

[23]

J. Paulsen and H. K. Gjessing, Ruin theory with stochastic return on investments,, Adv. Appl. Probab., 29 (1997), 965.   Google Scholar

[24]

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extremes \textbf{5} (2002), 5 (2002), 303.  doi: 10.1023/A:1025148622954.  Google Scholar

[25]

S. I. Resnick, "Extreme Values, Regular Variation and Point Processes,", Reprint of the 1987 original, (1987).   Google Scholar

[26]

X. M. Shen, Z. Y. Lin and Y. Zhang, Uniform estimate for maximum of randomly weighted sums with applications to ruin theory,, Methodol. Comput. Appl. Probab., 11 (2009), 669.  doi: 10.1007/s11009-008-9090-6.  Google Scholar

[27]

Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and finanicial risks,, Stochastic Proc. Appl., 108 (2003), 299.   Google Scholar

[28]

Q. Tang, G. Wang and K. Yuen, Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model,, Insurance Math. Econom., 46 (2010), 362.  doi: 10.1016/j.insmatheco.2009.12.002.  Google Scholar

[29]

G. Temnov, Risk processes with random income,, J. Math. Sci., 123 (2004), 3780.  doi: 10.1023/B:JOTH.0000036319.21285.22.  Google Scholar

[30]

Y. Zhang, X. Shen and C. Weng, Approximation of the tail probability of randomly weighted sums and applications,, Stochastic Proc. Appl., 119 (2009), 655.  doi: 10.1016/j.spa.2008.03.004.  Google Scholar

[31]

Z. Zhang and H. Yang, On a risk model with stochastic premiums income and dependence between income and loss,, J. Comput. Appl. Math., 234 (2010), 44.  doi: 10.1016/j.cam.2009.12.004.  Google Scholar

[32]

M. Zhou and J. Cai, A perturbed risk model with dependence between premium rates and claim sizes,, Insurance Math. Econom., 45 (2009), 382.  doi: 10.1016/j.insmatheco.2009.08.008.  Google Scholar

show all references

References:
[1]

H. Albrecher and O. J. Boxma, A ruin model with dependence between claim sizes and claim intervals,, Insurance Math. Econom., 35 (2004), 245.  doi: 10.1016/j.insmatheco.2003.09.009.  Google Scholar

[2]

H. Albrecher and J. L. Teugels, Exponential behavior in the presence of dependence in risk theory,, J. App. Probab., 43 (2006), 257.  doi: 10.1239/jap/1143936258.  Google Scholar

[3]

A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model,, Scand. Actuar. J., 2010 (): 93.  doi: 10.1080/03461230802700897.  Google Scholar

[4]

A. L. Badescu, E. C. K. Cheung and D. Landriault, Dependent risk models with bivariate phase-type distributions,, J. Appl. Probab., 46 (2009), 113.  doi: 10.1239/jap/1238592120.  Google Scholar

[5]

R. Biard, C. Lefévre and S. Loisel, Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationary assumptions are relaxed,, Insurance Math. Econom., 43 (2008), 412.  doi: 10.1016/j.insmatheco.2008.08.004.  Google Scholar

[6]

N. H. Bingham, C. M. Goldie and J. L. Teugels, "Regular Variation,", Encyclopedia of Mathematics and its Applications, 27 (1987).   Google Scholar

[7]

A. V. Boĭkov, The Cramer-Lundberg model with stochastic premiums,, Theory Probab. Appl., 47 (2003), 489.  doi: 10.1137/S0040585X9797987.  Google Scholar

[8]

M. Boudreault, H. Cossette, D. Landriault and E. Marceau, On a risk model with dependence between interclaim arrivals and claim sizes,, Scand. Actuar. J., 5 (2006), 265.  doi: 10.1080/03461230600992266.  Google Scholar

[9]

R. J. Boucherie, O. J. Boxma and K. Sigman, A note on negative customers, GI/G/I workload, and risk processes,, Prob. Eng. Inf. Sci., 11 (1997), 305.  doi: 10.1017/S0269964800004848.  Google Scholar

[10]

L. Breiman, On some limit theorms similar to the arc-sin law,, Teor. Verojatnost. i Primenen, 10 (1965), 323.  doi: 10.1137/1110037.  Google Scholar

[11]

D. B. H. Cline, Intermediate regular and $\Pi$ variation,, Proc. London Math. Soc., 68 (1994), 594.  doi: 10.1112/plms/s3-68.3.594.  Google Scholar

[12]

D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables,, Stoch. Proc. Appl., 49 (1994), 75.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[13]

R. Cont and P. Tankov, "Financial Modelling with Jump Processes,", Chapman & Hall/CRC Financial Mathematics Series, (2004).   Google Scholar

[14]

H. Cossette, E. Marceau and F. Marri, On the compound Poisson risk model with dependence based on a generalized Falie-Gumbel-Morgenstern copula,, Insurance Math. Econom., 43 (2008), 444.  doi: 10.1016/j.insmatheco.2008.08.009.  Google Scholar

[15]

Q. Gao and Y. Wang, Randomly weighted sums with dominantly varying-tailed increments and applications to risk theory,, J. Korean Stat. Soc., 39 (2010), 305.  doi: 10.1016/j.jkss.2010.02.004.  Google Scholar

[16]

C. C. Heyde and D. Wang, Finite-time ruin probaility with an exponential Lévy process investment return and heavy-tailed claims,, Adv. App. Probab., 41 (2009), 206.  doi: 10.1239/aap/1240319582.  Google Scholar

[17]

V. Kalashnikov and R. Norberg, Power tailed ruin probabilities in the presence of risky investments,, Stochastic Proc. Appl., 98 (2002), 211.  doi: 10.1016/S0304-4149(01)00148-X.  Google Scholar

[18]

C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential Lévy investment,, Insurance Math. Econom., 42 (2008), 560.   Google Scholar

[19]

S. Kotz, N. Balakrishnan and N. L. Johnson, "Continuous Multivariate Distribution. Vol. I. Models and Applications,", 2nd edition, (2000).   Google Scholar

[20]

E. L. Lehmann, Some concepts of dependence,, Ann. Math. Statist., 37 (1966), 1137.  doi: 10.1214/aoms/1177699260.  Google Scholar

[21]

J. Li, Q. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model,, Adv. Appl. Probab., 42 (2010), 1126.  doi: 10.1239/aap/1293113154.  Google Scholar

[22]

R. B. Nelsen, "An Introduction to Copulas,", 2nd edition, (2006).   Google Scholar

[23]

J. Paulsen and H. K. Gjessing, Ruin theory with stochastic return on investments,, Adv. Appl. Probab., 29 (1997), 965.   Google Scholar

[24]

S. I. Resnick, Hidden regular variation, second order regular variation and asymptotic independence,, Extremes \textbf{5} (2002), 5 (2002), 303.  doi: 10.1023/A:1025148622954.  Google Scholar

[25]

S. I. Resnick, "Extreme Values, Regular Variation and Point Processes,", Reprint of the 1987 original, (1987).   Google Scholar

[26]

X. M. Shen, Z. Y. Lin and Y. Zhang, Uniform estimate for maximum of randomly weighted sums with applications to ruin theory,, Methodol. Comput. Appl. Probab., 11 (2009), 669.  doi: 10.1007/s11009-008-9090-6.  Google Scholar

[27]

Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and finanicial risks,, Stochastic Proc. Appl., 108 (2003), 299.   Google Scholar

[28]

Q. Tang, G. Wang and K. Yuen, Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model,, Insurance Math. Econom., 46 (2010), 362.  doi: 10.1016/j.insmatheco.2009.12.002.  Google Scholar

[29]

G. Temnov, Risk processes with random income,, J. Math. Sci., 123 (2004), 3780.  doi: 10.1023/B:JOTH.0000036319.21285.22.  Google Scholar

[30]

Y. Zhang, X. Shen and C. Weng, Approximation of the tail probability of randomly weighted sums and applications,, Stochastic Proc. Appl., 119 (2009), 655.  doi: 10.1016/j.spa.2008.03.004.  Google Scholar

[31]

Z. Zhang and H. Yang, On a risk model with stochastic premiums income and dependence between income and loss,, J. Comput. Appl. Math., 234 (2010), 44.  doi: 10.1016/j.cam.2009.12.004.  Google Scholar

[32]

M. Zhou and J. Cai, A perturbed risk model with dependence between premium rates and claim sizes,, Insurance Math. Econom., 45 (2009), 382.  doi: 10.1016/j.insmatheco.2009.08.008.  Google Scholar

[1]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[2]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[3]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[4]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]