• Previous Article
    A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization
  • JIMO Home
  • This Issue
  • Next Article
    Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums
October  2011, 7(4): 875-890. doi: 10.3934/jimo.2011.7.875

Optimal fleet composition via dynamic programming and golden section search

1. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987 Perth, Western Australia 6845, Australia, Australia

Received  September 2010 Revised  May 2011 Published  August 2011

In this paper, we consider an optimization problem arising in vehicle fleet management. The problem is to construct a heterogeneous vehicle fleet in such a way that cost is minimized subject to a constraint on the overall fleet size. The cost function incorporates fixed and variable costs associated with the fleet, as well as hiring costs that are incurred when vehicle requirements exceed fleet capacity. We first consider the simple case when there is only one type of vehicle. We show that in this case the cost function is convex, and thus the problem can be solved efficiently using the well-known golden section method. We then devise an algorithm, based on dynamic programming and the golden section method, for solving the general problem in which there are multiple vehicle types. We conclude the paper with some simulation results.
Citation: Ryan Loxton, Qun Lin. Optimal fleet composition via dynamic programming and golden section search. Journal of Industrial & Management Optimization, 2011, 7 (4) : 875-890. doi: 10.3934/jimo.2011.7.875
References:
[1]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, "Nonlinear Programming: Theory and Algorithms," 3rd edition,, Wiley-Interscience [John Wiley & Sons], (2006).   Google Scholar

[2]

R. Bellman, "Dynamic Programming,", Dover Publications, (2003).   Google Scholar

[3]

J. Couillard, A decision support system for vehicle fleet planning,, Decision Support Systems, 9 (1993), 149.  doi: 10.1016/0167-9236(93)90009-R.  Google Scholar

[4]

G. Ghiani, G. Laporte and R. Musmanno, "Introduction to Logistics Systems Planning and Control,", John Wiley, (2004).   Google Scholar

[5]

A. Hoff, H. Andersson, M. Christiansen, G. Hasle and A. Løkketangen, Industrial aspects and literature survey: Fleet composition and routing,, Computers & Operations Research, 37 (2010), 2041.  doi: 10.1016/j.cor.2010.03.015.  Google Scholar

[6]

A. Imai and F. Rivera, Strategic fleet size planning for maritime refrigerated containers,, Maritime Policy & Management, 28 (2001), 361.  doi: 10.1080/03088830010020629.  Google Scholar

[7]

D. Kirby, Is your fleet the right size?,, Operational Research Quarterly, 10 (1959).  doi: 10.1057/jors.1959.25.  Google Scholar

[8]

M.-Y. Lai, C.-S. Liu and X.-J. Tong, A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows,, Journal of Industrial & Management Optimization, 6 (2010), 435.  doi: 10.3934/jimo.2010.6.435.  Google Scholar

[9]

D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition,, International Series in Operations Research & Management Science, 116 (2008).   Google Scholar

[10]

H. L. Royden, "Real Analysis," 3rd edition,, Macmillan Publishing Company, (1988).   Google Scholar

[11]

I. F. A. Vis, R. B. M. de Koster and M. W. P. Savelsbergh, Minimum vehicle fleet size under time-window constraints at a container terminal,, Transportation Science, 39 (2005), 249.  doi: 10.1287/trsc.1030.0063.  Google Scholar

show all references

References:
[1]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, "Nonlinear Programming: Theory and Algorithms," 3rd edition,, Wiley-Interscience [John Wiley & Sons], (2006).   Google Scholar

[2]

R. Bellman, "Dynamic Programming,", Dover Publications, (2003).   Google Scholar

[3]

J. Couillard, A decision support system for vehicle fleet planning,, Decision Support Systems, 9 (1993), 149.  doi: 10.1016/0167-9236(93)90009-R.  Google Scholar

[4]

G. Ghiani, G. Laporte and R. Musmanno, "Introduction to Logistics Systems Planning and Control,", John Wiley, (2004).   Google Scholar

[5]

A. Hoff, H. Andersson, M. Christiansen, G. Hasle and A. Løkketangen, Industrial aspects and literature survey: Fleet composition and routing,, Computers & Operations Research, 37 (2010), 2041.  doi: 10.1016/j.cor.2010.03.015.  Google Scholar

[6]

A. Imai and F. Rivera, Strategic fleet size planning for maritime refrigerated containers,, Maritime Policy & Management, 28 (2001), 361.  doi: 10.1080/03088830010020629.  Google Scholar

[7]

D. Kirby, Is your fleet the right size?,, Operational Research Quarterly, 10 (1959).  doi: 10.1057/jors.1959.25.  Google Scholar

[8]

M.-Y. Lai, C.-S. Liu and X.-J. Tong, A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows,, Journal of Industrial & Management Optimization, 6 (2010), 435.  doi: 10.3934/jimo.2010.6.435.  Google Scholar

[9]

D. G. Luenberger and Y. Ye, "Linear and Nonlinear Programming," 3rd edition,, International Series in Operations Research & Management Science, 116 (2008).   Google Scholar

[10]

H. L. Royden, "Real Analysis," 3rd edition,, Macmillan Publishing Company, (1988).   Google Scholar

[11]

I. F. A. Vis, R. B. M. de Koster and M. W. P. Savelsbergh, Minimum vehicle fleet size under time-window constraints at a container terminal,, Transportation Science, 39 (2005), 249.  doi: 10.1287/trsc.1030.0063.  Google Scholar

[1]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[4]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[5]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[6]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[7]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[8]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[9]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[10]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[13]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[14]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[15]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[16]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[17]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[18]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[19]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[20]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]