-
Previous Article
A smoothing homotopy method based on Robinson's normal equation for mixed complementarity problems
- JIMO Home
- This Issue
-
Next Article
A new dynamic geometric approach for empirical analysis of financial ratios and bankruptcy
A variational problem and optimal control
1. | Chung Yuan Christian University, Chung Li, Taiwan, Taiwan |
2. | National Tsing Hua University, Hsinchu, Taiwan |
References:
[1] |
G. P. Akilov and L. V. Kantorovich, "Functional Analysis," 2nd edition, Translated from the Russian by Howard L. Silcock, Pergamon Press, Oxford-Elmsford, NY, 1982. |
[2] |
H. C. Lai, Duality of Banach function spaces and Radon Nikodym property, Acta Mathematics Hungarica, 47 (1986), 45-52.
doi: 10.1007/BF01949123. |
[3] |
H. C. Lai and J. W. Chen, On the generalized Euler-Lagrange equations, Journal of Mathematical Analysis and Applications, 213 (1997), 681-697. |
[4] |
H. C. Lai and J. C. Lee, Convergent Theorems and $L$$p$-selections for Banach-valued multifunctions, Nihonkai Math. Journal, 4 (1993), 163-180. |
[5] |
H. C. Lai and J. C. Lee, Integration Theory for Banach-valued multifunctions, Indian Journal of Mathematics, 34 (1992), 265-284. |
[6] |
H. C. Lai and J. C. Lee, Integral representations and convergences for Banach-valued multifunctions, Fixed Point Theory and Applications (Halifax, NS, 1991), World Scientific Publ., River Edge, NJ, (1992), 169-188. |
[7] |
H. C. Lai and L. J. Lin, The Fenchel-Moreau theorem for set functions, Proceedings of the American Mathematics Society, 103 (1988), 85-90.
doi: 10.1090/S0002-9939-1988-0938649-4. |
[8] |
C. Olech, Existence theorem in optimal control problems involving multiple integrals, Journal of Differential Equations, 6 (1969), 512-526.
doi: 10.1016/0022-0396(69)90007-2. |
[9] |
J. P. Raymond, Existence theorems in optimal control problems without convexity assumptions, Journal of Optimization Theory and Applications, 67 (1990), 109-132.
doi: 10.1007/BF00939738. |
[10] |
R. T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Advances in Mathematics, 15 (1975), 312-333.
doi: 10.1016/0001-8708(75)90140-1. |
show all references
References:
[1] |
G. P. Akilov and L. V. Kantorovich, "Functional Analysis," 2nd edition, Translated from the Russian by Howard L. Silcock, Pergamon Press, Oxford-Elmsford, NY, 1982. |
[2] |
H. C. Lai, Duality of Banach function spaces and Radon Nikodym property, Acta Mathematics Hungarica, 47 (1986), 45-52.
doi: 10.1007/BF01949123. |
[3] |
H. C. Lai and J. W. Chen, On the generalized Euler-Lagrange equations, Journal of Mathematical Analysis and Applications, 213 (1997), 681-697. |
[4] |
H. C. Lai and J. C. Lee, Convergent Theorems and $L$$p$-selections for Banach-valued multifunctions, Nihonkai Math. Journal, 4 (1993), 163-180. |
[5] |
H. C. Lai and J. C. Lee, Integration Theory for Banach-valued multifunctions, Indian Journal of Mathematics, 34 (1992), 265-284. |
[6] |
H. C. Lai and J. C. Lee, Integral representations and convergences for Banach-valued multifunctions, Fixed Point Theory and Applications (Halifax, NS, 1991), World Scientific Publ., River Edge, NJ, (1992), 169-188. |
[7] |
H. C. Lai and L. J. Lin, The Fenchel-Moreau theorem for set functions, Proceedings of the American Mathematics Society, 103 (1988), 85-90.
doi: 10.1090/S0002-9939-1988-0938649-4. |
[8] |
C. Olech, Existence theorem in optimal control problems involving multiple integrals, Journal of Differential Equations, 6 (1969), 512-526.
doi: 10.1016/0022-0396(69)90007-2. |
[9] |
J. P. Raymond, Existence theorems in optimal control problems without convexity assumptions, Journal of Optimization Theory and Applications, 67 (1990), 109-132.
doi: 10.1007/BF00939738. |
[10] |
R. T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Advances in Mathematics, 15 (1975), 312-333.
doi: 10.1016/0001-8708(75)90140-1. |
[1] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations and Control Theory, 2022, 11 (2) : 605-619. doi: 10.3934/eect.2021016 |
[2] |
Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051 |
[3] |
Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1429-1440. doi: 10.3934/dcdss.2020081 |
[4] |
Shaoqiang Shang, Yunan Cui. Weak approximative compactness of hyperplane and Asplund property in Musielak-Orlicz-Bochner function spaces. Electronic Research Archive, 2020, 28 (1) : 327-346. doi: 10.3934/era.2020019 |
[5] |
Jonathan Meddaugh. Shadowing as a structural property of the space of dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2439-2451. doi: 10.3934/dcds.2021197 |
[6] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280 |
[7] |
Agnieszka Ulikowska. An age-structured two-sex model in the space of radon measures: Well posedness. Kinetic and Related Models, 2012, 5 (4) : 873-900. doi: 10.3934/krm.2012.5.873 |
[8] |
Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019 |
[9] |
Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations and Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026 |
[10] |
Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 |
[11] |
Daniel Alpay, Mihai Putinar, Victor Vinnikov. A Hilbert space approach to bounded analytic extension in the ball. Communications on Pure and Applied Analysis, 2003, 2 (2) : 139-145. doi: 10.3934/cpaa.2003.2.139 |
[12] |
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic and Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17 |
[13] |
Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887 |
[14] |
Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671 |
[15] |
Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283 |
[16] |
Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068 |
[17] |
RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061 |
[18] |
Makoto Okumura, Daisuke Furihata. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4927-4960. doi: 10.3934/dcds.2020206 |
[19] |
G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279 |
[20] |
T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems and Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]