-
Previous Article
Duality in linear programming: From trichotomy to quadrichotomy
- JIMO Home
- This Issue
-
Next Article
A smoothing homotopy method based on Robinson's normal equation for mixed complementarity problems
Multiple solutions for a class of semilinear elliptic variational inclusion problems
1. | Department of Mathematics, Soochow University, Suzhou, 215006, China, China |
References:
[1] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[2] |
Z. Denkowski, L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for semilinear hemivariational inequalities at resonance, Nonlinear Anal., 66 (2007), 1329-1340.
doi: 10.1016/j.na.2006.01.019. |
[3] |
L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[4] |
M. Filippakis, L. Gasinski and N. S. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Anal., 61 (2005), 61-75.
doi: 10.1016/j.na.2004.11.012. |
[5] |
Z. Denkowski, L. Gasinski and N. S. Papageorgiou, Nontrivial solutions for resonant hemivariational inequalities, J. Global Optim., 34 (2006), 317-337.
doi: 10.1007/s10898-005-4388-1. |
[6] |
L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Series in Mathematical Analysis and Applications, 8, Chapman & Hall/CRC, Boca Raton, FL, 2005. |
[7] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints, J. Ind. Manag. Optim., 3 (2007), 671-684. |
[8] |
G. Idone and A. Maugeri, Variational inequalities and a transport planning for an elastic and continuum model, J. Ind. Manag. Optim., 1 (2005), 81-86. |
[9] |
N. S. Papageorgiou, S. R. Andrade Santos and V. Staicu, Eigenvalue problems for hemivariational inequalities, Set-Valued Anal., 16 (2008), 1061-1087.
doi: 10.1007/s11228-008-0100-1. |
[10] |
C.-L. Tang and Q.-J. Gao, Elliptic resonant problems at higher eigenvalues with an unbounded nonlinear term, J. Diff. Equat., 146 (1998), 56-66.
doi: 10.1006/jdeq.1998.3411. |
[11] |
C.-L. Tang, Multiple solutions of Neumann problem for elliptic equations, Nonlinear Anal., 54 (2003), 637-650.
doi: 10.1016/S0362-546X(03)00091-9. |
[12] |
L. Wang, Y. Li and L. W. Zhang, A differential equation method for solving box constrained variational inequality problems, J. Ind. Manag. Optim., 7 (2011), 183-198. |
show all references
References:
[1] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[2] |
Z. Denkowski, L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for semilinear hemivariational inequalities at resonance, Nonlinear Anal., 66 (2007), 1329-1340.
doi: 10.1016/j.na.2006.01.019. |
[3] |
L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. |
[4] |
M. Filippakis, L. Gasinski and N. S. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Anal., 61 (2005), 61-75.
doi: 10.1016/j.na.2004.11.012. |
[5] |
Z. Denkowski, L. Gasinski and N. S. Papageorgiou, Nontrivial solutions for resonant hemivariational inequalities, J. Global Optim., 34 (2006), 317-337.
doi: 10.1007/s10898-005-4388-1. |
[6] |
L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Series in Mathematical Analysis and Applications, 8, Chapman & Hall/CRC, Boca Raton, FL, 2005. |
[7] |
X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints, J. Ind. Manag. Optim., 3 (2007), 671-684. |
[8] |
G. Idone and A. Maugeri, Variational inequalities and a transport planning for an elastic and continuum model, J. Ind. Manag. Optim., 1 (2005), 81-86. |
[9] |
N. S. Papageorgiou, S. R. Andrade Santos and V. Staicu, Eigenvalue problems for hemivariational inequalities, Set-Valued Anal., 16 (2008), 1061-1087.
doi: 10.1007/s11228-008-0100-1. |
[10] |
C.-L. Tang and Q.-J. Gao, Elliptic resonant problems at higher eigenvalues with an unbounded nonlinear term, J. Diff. Equat., 146 (1998), 56-66.
doi: 10.1006/jdeq.1998.3411. |
[11] |
C.-L. Tang, Multiple solutions of Neumann problem for elliptic equations, Nonlinear Anal., 54 (2003), 637-650.
doi: 10.1016/S0362-546X(03)00091-9. |
[12] |
L. Wang, Y. Li and L. W. Zhang, A differential equation method for solving box constrained variational inequality problems, J. Ind. Manag. Optim., 7 (2011), 183-198. |
[1] |
Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315 |
[2] |
Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure and Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571 |
[3] |
Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295 |
[4] |
David Bechara Senior, Umberto L. Hryniewicz, Pedro A. S. Salomão. On the relation between action and linking. Journal of Modern Dynamics, 2021, 17: 319-336. doi: 10.3934/jmd.2021011 |
[5] |
Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627 |
[6] |
Hamid Maarouf. Local Kalman rank condition for linear time varying systems. Mathematical Control and Related Fields, 2022, 12 (2) : 433-446. doi: 10.3934/mcrf.2021029 |
[7] |
Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165 |
[8] |
Yanqun Liu. An exterior point linear programming method based on inclusive normal cones. Journal of Industrial and Management Optimization, 2010, 6 (4) : 825-846. doi: 10.3934/jimo.2010.6.825 |
[9] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[10] |
Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Multiple solutions for nonlinear coercive Neumann problems. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1957-1974. doi: 10.3934/cpaa.2009.8.1957 |
[11] |
Diego Averna, Nikolaos S. Papageorgiou, Elisabetta Tornatore. Multiple solutions for nonlinear nonhomogeneous resonant coercive problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 155-178. doi: 10.3934/dcdss.2018010 |
[12] |
John Banks. Topological mapping properties defined by digraphs. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83 |
[13] |
Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009 |
[14] |
Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Local study of a renormalization operator for 1D maps under quasiperiodic forcing. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1171-1188. doi: 10.3934/dcdss.2016047 |
[15] |
Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049 |
[16] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3387-3399. doi: 10.3934/dcdss.2021017 |
[17] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014 |
[18] |
Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635 |
[19] |
Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semi-local convergence of the Newton-HSS method under the center Lipschitz condition. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 85-99. doi: 10.3934/naco.2019007 |
[20] |
Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]