\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiple solutions for a class of semilinear elliptic variational inclusion problems

Abstract Related Papers Cited by
  • In this paper, by using a local linking theorem, we obtain the existence of multiple solutions for a class of semilinear elliptic variational inclusion problems at non-resonance.
    Mathematics Subject Classification: Primary: 35R70, 35R45; Secondary: 35J50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. H. Clarke, "Optimization and Nonsmooth Analysis," Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

    [2]

    Z. Denkowski, L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for semilinear hemivariational inequalities at resonance, Nonlinear Anal., 66 (2007), 1329-1340.doi: 10.1016/j.na.2006.01.019.

    [3]

    L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis," Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006.

    [4]

    M. Filippakis, L. Gasinski and N. S. Papageorgiou, A multiplicity result for semilinear resonant elliptic problems with nonsmooth potential, Nonlinear Anal., 61 (2005), 61-75.doi: 10.1016/j.na.2004.11.012.

    [5]

    Z. Denkowski, L. Gasinski and N. S. Papageorgiou, Nontrivial solutions for resonant hemivariational inequalities, J. Global Optim., 34 (2006), 317-337.doi: 10.1007/s10898-005-4388-1.

    [6]

    L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Series in Mathematical Analysis and Applications, 8, Chapman & Hall/CRC, Boca Raton, FL, 2005.

    [7]

    X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints, J. Ind. Manag. Optim., 3 (2007), 671-684.

    [8]

    G. Idone and A. Maugeri, Variational inequalities and a transport planning for an elastic and continuum model, J. Ind. Manag. Optim., 1 (2005), 81-86.

    [9]

    N. S. Papageorgiou, S. R. Andrade Santos and V. Staicu, Eigenvalue problems for hemivariational inequalities, Set-Valued Anal., 16 (2008), 1061-1087.doi: 10.1007/s11228-008-0100-1.

    [10]

    C.-L. Tang and Q.-J. Gao, Elliptic resonant problems at higher eigenvalues with an unbounded nonlinear term, J. Diff. Equat., 146 (1998), 56-66.doi: 10.1006/jdeq.1998.3411.

    [11]

    C.-L. Tang, Multiple solutions of Neumann problem for elliptic equations, Nonlinear Anal., 54 (2003), 637-650.doi: 10.1016/S0362-546X(03)00091-9.

    [12]

    L. Wang, Y. Li and L. W. Zhang, A differential equation method for solving box constrained variational inequality problems, J. Ind. Manag. Optim., 7 (2011), 183-198.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return