
Previous Article
A proximal alternating direction method for $\ell_{2,1}$norm least squares problem in multitask feature learning
 JIMO Home
 This Issue

Next Article
A modified differential evolution based solution technique for economic dispatch problems
State transition algorithm
1.  School of Information Science and Engineering, Central South University, Changsha, 410083, China 
References:
[1] 
G. Albeanu, A monte carlo approach for control search, Mathematics and Computers in Simulation, 43 (1997), 223228. doi: 10.1016/S03784754(96)000699. 
[2] 
H. A. Abbass, A. M. Bagirov and J. Zhang, The discrete gradient evolutionary strategy method for global optimization, in "Proceedings of IEEE Congress on Evolutionary Computation," 1 (2003), 435442. 
[3] 
D. D. Burgess, Rotation in simplex optimization, Analytica Chimica Acta, 181 (1986), 97106. doi: 10.1016/S00032670(00)852241. 
[4] 
F. V. Berth and A. P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences, 176 (2006), 937971. doi: 10.1016/j.ins.2005.02.003. 
[5] 
P. Collet and J. P. Rennard, "Stochastic Optimization Algorithms," Handbook of Research on Nature Inspired Computing for Economics and Management, 2006. 
[6] 
K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space, Complex Systems, 9 (1995), 115148. 
[7] 
R. C. Eberhart and Y. H. Shi, Comparison between genetic algorithms and particle swarm optimization, in "Annual Conference on Evolutionary Programming," San Diego, (1998), 611616. 
[8] 
D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning," Reading: AddisonWesley, 1989. 
[9] 
C. Hamzacebi and F. Kutay, A heuristic approach for finding the global minimum: Adaptive random search technique, Applied Mathematics and Computation, 173 (2006), 13231333. doi: 10.1016/j.amc.2005.05.002. 
[10] 
C. Hamzacebi and F. Kutay, Continous functions minimization by dynamic random search technique, Applied Mathematical Modeling, 31 (2007), 21892198. doi: 10.1016/j.apm.2006.08.015. 
[11] 
R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems, Journal of the Association for Computing Machinery(ACM), 8 (1961), 212229. 
[12] 
J. Kennedy and R. C. Eberhart, Particle swarm optimization, in "Proceedings of IEEE International Conference on Neural Networks," IEEE Service Center, Piscataway, NJ, (1995), 19421948. 
[13] 
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the NelderMead simplex method in low dimensions, SIAM J. OPTIM., 9 (1998), 112147. 
[14] 
J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Transaction on Evolutionary Computation, 10 (2006), 281295. 
[15] 
J. Y. Li and R. R. Rhinehart, Heuristic random optimization, Computers and Chemical Engineering, 22 (1998), 427444. 
[16] 
T. W. Leung, C. K. Chan and M. D. Troutt, A mixed simulated annealinggenetic algorithm approach to the multibuyer multiitem joint replenishment problem: advantages of metaheuristics, Journal of Industrial and Management Optimization, 4 (2008), 5366. 
[17] 
J. Matyas, Random optimization, Automation and Remote Control, 26 (1965), 246253. 
[18] 
Z. Michalewicz, A modified genetic algorithm for optimal control problems, Computers Math. Applic, 23 (1992), 8394. doi: 10.1016/08981221(92)90094X. 
[19] 
J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal, 7 (1965), 308313. 
[20] 
A. K. Qin, V. L. Huang, and P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Transactions on Evolutionary Computation, 13 (2009), 398417. 
[21] 
G. Rudolph, Convergence analysis of canonical genetic algorithms, IEEE Transactions on Neural Networks, 5 (1994), 96101. 
[22] 
D. W. Stroock, "An Introduction to Markov Processes," Beijing: World Publishing Corporation, 2009. 
[23] 
F. J. Solis and R. J. B. Wets, Minimization by random search techniques, Mathematics of Operations Research, 6 (1981), 1930. 
[24] 
R. Storn and K. V. Price, Differential evolutionaryA simple and efficient heuristic for global optimization over continous spaces, Journal of Global Optimization, 11 (1997), 341359. doi: 10.1023/A:1008202821328. 
[25] 
Y. H. Shi and R. C. Eberhart, Empirical study of particle swarm optimization, in "Proceedings of the IEEE Congress on Evolutionary Computation," IEEE Press, Seoul, Korea, (2001), 19451950. 
[26] 
T. D. Tran and G. G. Jin, Realcoded genetic algorithm benchmarked on noiseless blackbox optimization testbed, in "Workshop Proceedings of the Genetic and Evolutionary Computation Conference," (2010), 17311738. 
[27] 
A. H. Wright, Genetic algorithms for real parameter optimization, in "Foundations of Genetic Algorithms" (Ed. G. J. E. Rawlins), (1991), 205220. 
[28] 
D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1 (1997), 6782. 
[29] 
K. F. C. Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization, Journal of Global Optimization, 28 (2004), 229238. doi: 10.1023/B:JOGO.0000015313.93974.b0. 
[30] 
X. S. Yang, "Engineering Optimization: An Introduction with Metaheuristic Applications," Wiley, 2010. 
[31] 
Y. X. Yuan, "Nonlinear Optimization Calculation Method," Beijing: Science press, 2008. 
[32] 
T. Zhang, Y. J. Zhang, Q. P. Zheng and P. M. Pardalos, A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories on the maketostock and maketoorder management architecture, Journal of Industrial and Management Optimization, 7 (2011), 3151. 
[33] 
X. J. Zhou, C. H. Yang and W. H. Gui, Initial version of state transition algorithm, in "the 2nd International Conference on Digital Manufacturing and Automation(ICDMA)," (2011), 644647. 
[34] 
X. J. Zhou, C. H. Yang and W. H. Gui, A new transformation into state transition algorithm for finding the global minimum, in "the 2nd International Conference on Intelligent Control and Information Processing," (2011), 674678. 
show all references
References:
[1] 
G. Albeanu, A monte carlo approach for control search, Mathematics and Computers in Simulation, 43 (1997), 223228. doi: 10.1016/S03784754(96)000699. 
[2] 
H. A. Abbass, A. M. Bagirov and J. Zhang, The discrete gradient evolutionary strategy method for global optimization, in "Proceedings of IEEE Congress on Evolutionary Computation," 1 (2003), 435442. 
[3] 
D. D. Burgess, Rotation in simplex optimization, Analytica Chimica Acta, 181 (1986), 97106. doi: 10.1016/S00032670(00)852241. 
[4] 
F. V. Berth and A. P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences, 176 (2006), 937971. doi: 10.1016/j.ins.2005.02.003. 
[5] 
P. Collet and J. P. Rennard, "Stochastic Optimization Algorithms," Handbook of Research on Nature Inspired Computing for Economics and Management, 2006. 
[6] 
K. Deb and R. B. Agrawal, Simulated binary crossover for continuous search space, Complex Systems, 9 (1995), 115148. 
[7] 
R. C. Eberhart and Y. H. Shi, Comparison between genetic algorithms and particle swarm optimization, in "Annual Conference on Evolutionary Programming," San Diego, (1998), 611616. 
[8] 
D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning," Reading: AddisonWesley, 1989. 
[9] 
C. Hamzacebi and F. Kutay, A heuristic approach for finding the global minimum: Adaptive random search technique, Applied Mathematics and Computation, 173 (2006), 13231333. doi: 10.1016/j.amc.2005.05.002. 
[10] 
C. Hamzacebi and F. Kutay, Continous functions minimization by dynamic random search technique, Applied Mathematical Modeling, 31 (2007), 21892198. doi: 10.1016/j.apm.2006.08.015. 
[11] 
R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems, Journal of the Association for Computing Machinery(ACM), 8 (1961), 212229. 
[12] 
J. Kennedy and R. C. Eberhart, Particle swarm optimization, in "Proceedings of IEEE International Conference on Neural Networks," IEEE Service Center, Piscataway, NJ, (1995), 19421948. 
[13] 
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the NelderMead simplex method in low dimensions, SIAM J. OPTIM., 9 (1998), 112147. 
[14] 
J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Transaction on Evolutionary Computation, 10 (2006), 281295. 
[15] 
J. Y. Li and R. R. Rhinehart, Heuristic random optimization, Computers and Chemical Engineering, 22 (1998), 427444. 
[16] 
T. W. Leung, C. K. Chan and M. D. Troutt, A mixed simulated annealinggenetic algorithm approach to the multibuyer multiitem joint replenishment problem: advantages of metaheuristics, Journal of Industrial and Management Optimization, 4 (2008), 5366. 
[17] 
J. Matyas, Random optimization, Automation and Remote Control, 26 (1965), 246253. 
[18] 
Z. Michalewicz, A modified genetic algorithm for optimal control problems, Computers Math. Applic, 23 (1992), 8394. doi: 10.1016/08981221(92)90094X. 
[19] 
J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal, 7 (1965), 308313. 
[20] 
A. K. Qin, V. L. Huang, and P. N. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Transactions on Evolutionary Computation, 13 (2009), 398417. 
[21] 
G. Rudolph, Convergence analysis of canonical genetic algorithms, IEEE Transactions on Neural Networks, 5 (1994), 96101. 
[22] 
D. W. Stroock, "An Introduction to Markov Processes," Beijing: World Publishing Corporation, 2009. 
[23] 
F. J. Solis and R. J. B. Wets, Minimization by random search techniques, Mathematics of Operations Research, 6 (1981), 1930. 
[24] 
R. Storn and K. V. Price, Differential evolutionaryA simple and efficient heuristic for global optimization over continous spaces, Journal of Global Optimization, 11 (1997), 341359. doi: 10.1023/A:1008202821328. 
[25] 
Y. H. Shi and R. C. Eberhart, Empirical study of particle swarm optimization, in "Proceedings of the IEEE Congress on Evolutionary Computation," IEEE Press, Seoul, Korea, (2001), 19451950. 
[26] 
T. D. Tran and G. G. Jin, Realcoded genetic algorithm benchmarked on noiseless blackbox optimization testbed, in "Workshop Proceedings of the Genetic and Evolutionary Computation Conference," (2010), 17311738. 
[27] 
A. H. Wright, Genetic algorithms for real parameter optimization, in "Foundations of Genetic Algorithms" (Ed. G. J. E. Rawlins), (1991), 205220. 
[28] 
D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1 (1997), 6782. 
[29] 
K. F. C. Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization, Journal of Global Optimization, 28 (2004), 229238. doi: 10.1023/B:JOGO.0000015313.93974.b0. 
[30] 
X. S. Yang, "Engineering Optimization: An Introduction with Metaheuristic Applications," Wiley, 2010. 
[31] 
Y. X. Yuan, "Nonlinear Optimization Calculation Method," Beijing: Science press, 2008. 
[32] 
T. Zhang, Y. J. Zhang, Q. P. Zheng and P. M. Pardalos, A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories on the maketostock and maketoorder management architecture, Journal of Industrial and Management Optimization, 7 (2011), 3151. 
[33] 
X. J. Zhou, C. H. Yang and W. H. Gui, Initial version of state transition algorithm, in "the 2nd International Conference on Digital Manufacturing and Automation(ICDMA)," (2011), 644647. 
[34] 
X. J. Zhou, C. H. Yang and W. H. Gui, A new transformation into state transition algorithm for finding the global minimum, in "the 2nd International Conference on Intelligent Control and Information Processing," (2011), 674678. 
[1] 
Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial and Management Optimization, 2020, 16 (1) : 103115. doi: 10.3934/jimo.2018142 
[2] 
LeongKwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 193207. doi: 10.3934/naco.2014.4.193 
[3] 
Behrouz Kheirfam, Morteza Moslemi. On the extension of an arcsearch interiorpoint algorithm for semidefinite optimization. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 261275. doi: 10.3934/naco.2018015 
[4] 
Mohamed A. Tawhid, Ahmed F. Ali. An effective hybrid firefly algorithm with the cuckoo search for engineering optimization problems. Mathematical Foundations of Computing, 2018, 1 (4) : 349368. doi: 10.3934/mfc.2018017 
[5] 
LeongKwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial and Management Optimization, 2011, 7 (2) : 385400. doi: 10.3934/jimo.2011.7.385 
[6] 
Sen Zhang, Guo Zhou, Yongquan Zhou, Qifang Luo. Quantuminspired satin bowerbird algorithm with Bloch spherical search for constrained structural optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 35093523. doi: 10.3934/jimo.2020130 
[7] 
Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial and Management Optimization, 2010, 6 (1) : 177196. doi: 10.3934/jimo.2010.6.177 
[8] 
Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 1929. doi: 10.3934/naco.2012.2.19 
[9] 
Tao Zhang, YueJie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the MakeToStock and MakeToOrder management architecture. Journal of Industrial and Management Optimization, 2011, 7 (1) : 3151. doi: 10.3934/jimo.2011.7.31 
[10] 
Qiang Long, Changzhi Wu. A hybrid method combining genetic algorithm and HookeJeeves method for constrained global optimization. Journal of Industrial and Management Optimization, 2014, 10 (4) : 12791296. doi: 10.3934/jimo.2014.10.1279 
[11] 
Kien Ming Ng, Trung Hieu Tran. A parallel water flow algorithm with local search for solving the quadratic assignment problem. Journal of Industrial and Management Optimization, 2019, 15 (1) : 235259. doi: 10.3934/jimo.2018041 
[12] 
Yaofeng Su. Almost surely invariance principle for nonstationary and random intermittent dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 65856597. doi: 10.3934/dcds.2019286 
[13] 
MingJong Yao, TienCheng Hsu. An efficient search algorithm for obtaining the optimal replenishment strategies in multistage justintime supply chain systems. Journal of Industrial and Management Optimization, 2009, 5 (1) : 1132. doi: 10.3934/jimo.2009.5.11 
[14] 
AbdelRahman Hedar, Ahmed Fouad Ali, Taysir Hassan AbdelHamid. Genetic algorithm and Tabu search based methods for molecular 3Dstructure prediction. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 191209. doi: 10.3934/naco.2011.1.191 
[15] 
Zheng Chang, Haoxun Chen, Farouk Yalaoui, Bo Dai. Adaptive large neighborhood search Algorithm for route planning of freight buses with pickup and delivery. Journal of Industrial and Management Optimization, 2021, 17 (4) : 17711793. doi: 10.3934/jimo.2020045 
[16] 
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $facility location problem with linear penalties. Journal of Industrial and Management Optimization, 2021, 17 (4) : 20132030. doi: 10.3934/jimo.2020056 
[17] 
Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (2) : 703717. doi: 10.3934/jimo.2016.12.703 
[18] 
Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGAII and local search algorithm. Journal of Industrial and Management Optimization, 2020, 16 (4) : 18011834. doi: 10.3934/jimo.2019030 
[19] 
Bin Feng, Lixin Wei, Ziyu Hu. An adaptive large neighborhood search algorithm for Vehicle Routing Problem with Multiple Time Windows constraints. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021197 
[20] 
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimizationbased subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99130. doi: 10.3934/jcd.2021005 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]