-
Previous Article
Convex optimization on mixed domains
- JIMO Home
- This Issue
-
Next Article
A fast $\ell_1$-solver and its applications to robust face recognition
Topological essentiality in infinite games
1. | School of Mathematics and Computer Science, Guizhou Normal University, Guizhou, Guiyang 550001, China |
2. | Department of Mathematics, Guizhou Uniersity, Guizhou, Guiyang 550025, China |
3. | Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China |
References:
[1] |
N. Al-Najjar, Strategically stable equilibria in games with infinitely many pure strategies,, Math. Soc. Sci., 29 (1995), 151.
doi: 10.1016/0165-4896(94)00765-Z. |
[2] |
P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968).
|
[3] |
K. Fan, Fixed-point and minimax theorems in locally convex linear spaces,, Proc. Natl. Acad. Sci. USA, 38 (1952), 121.
doi: 10.1073/pnas.38.2.121. |
[4] |
D. Fudenberg and D. Levine, Subgame perfect equilibria of finite- and infinite-horizon games,, J. Economic Theory, 31 (1983), 251.
|
[5] |
D. Fudenberg and D. Levine, Limit games and limit equilibria,, J. Economic Theory, 38 (1986), 261.
doi: 10.1016/0022-0531(86)90118-3. |
[6] |
I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points,, Proc. Amer. Math. Soc., 3 (1952), 170.
|
[7] |
S. Govindan and R. Wilson, Essential equilibria,, Proc. Natl. Acad. Sci. USA, 102 (2005), 15706.
doi: 10.1073/pnas.0506796102. |
[8] |
J. Hillas, On the definition of the strategic stability of equilibria,, Econometrica, 58 (1990), 1365.
doi: 10.2307/2938320. |
[9] |
J. Jiang, Essential equilibrium points of n-person non-cooperative games. II,, Sci. Sinica, 12 (1963), 651.
|
[10] |
J. Jiang, Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games,, Sci. Sinica, 12 (1963), 951.
|
[11] |
E. Klein and A. Thompson, "Theory of Correspondences. Including Applications to Mathematical Economics,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1984).
|
[12] |
E. Kohlberg and J. Mertens, On the strategic stability of equilibria,, Econometrica, 54 (1986), 1003.
doi: 10.2307/1912320. |
[13] |
A. McLennan, Consistent conditional beliefs in noncooperative game theory,, Int. J. of Game Theory, 18 (1989), 175.
doi: 10.1007/BF01268156. |
[14] |
J. F. Nash, Jr., Equilibrium points in $n$-person games,, Proc. Natl. Acad. Sci. USA, 36 (1950), 48.
doi: 10.1073/pnas.36.1.48. |
[15] |
J. Nash, Non-cooperative games,, Ann. Math. (2), 54 (1951), 286.
doi: 10.2307/1969529. |
[16] |
B. O'Neill, Essential sets and fixed points,, Am. J. Math., 75 (1953), 497.
|
[17] |
R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games,, Int. J. of Game Theory, 4 (1975), 25.
doi: 10.1007/BF01766400. |
[18] |
L. Simon, Local perfection,, J. Economic Theory, 43 (1987), 134.
doi: 10.1016/0022-0531(87)90118-9. |
[19] |
L. Simon and M. Stinchcombe, Equilibrium refinement for infinite normal-form games,, Econometrica, 63 (1995), 1421.
doi: 10.2307/2171776. |
[20] |
A. Tychonoff, Ein fixpunktsatz,, Math. Ann., 111 (1935), 767.
|
[21] |
E. van Damme, "Stability and Perfection of Nash Equilibria,", Second edition, (1991).
|
[22] |
W. Wu and J. Jiang, Essential equilibrium points of n-person non-cooperative games,, Sci. Sinica, 11 (1962), 1307.
|
[23] |
Y. Zhou, J. Yu and L. Wang, A new proof of existence of equilibria in infinite normal form games,, Appl. Math. Lett., 24 (2011), 253.
doi: 10.1016/j.aml.2010.09.014. |
[24] |
Y. Zhou, J. Yu and S. Xiang, Essential stability in games with infinitely many pure strategies,, Int. J. of Game Theory, 35 (2007), 493.
doi: 10.1007/s00182-006-0063-0. |
[25] |
Y. Zhou, J. Yu and S. Xiang, A metric on the space of finite measures with an application to fixed point theory,, Appl. Math. Lett., 21 (2008), 489.
doi: 10.1016/j.aml.2007.05.015. |
show all references
References:
[1] |
N. Al-Najjar, Strategically stable equilibria in games with infinitely many pure strategies,, Math. Soc. Sci., 29 (1995), 151.
doi: 10.1016/0165-4896(94)00765-Z. |
[2] |
P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968).
|
[3] |
K. Fan, Fixed-point and minimax theorems in locally convex linear spaces,, Proc. Natl. Acad. Sci. USA, 38 (1952), 121.
doi: 10.1073/pnas.38.2.121. |
[4] |
D. Fudenberg and D. Levine, Subgame perfect equilibria of finite- and infinite-horizon games,, J. Economic Theory, 31 (1983), 251.
|
[5] |
D. Fudenberg and D. Levine, Limit games and limit equilibria,, J. Economic Theory, 38 (1986), 261.
doi: 10.1016/0022-0531(86)90118-3. |
[6] |
I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points,, Proc. Amer. Math. Soc., 3 (1952), 170.
|
[7] |
S. Govindan and R. Wilson, Essential equilibria,, Proc. Natl. Acad. Sci. USA, 102 (2005), 15706.
doi: 10.1073/pnas.0506796102. |
[8] |
J. Hillas, On the definition of the strategic stability of equilibria,, Econometrica, 58 (1990), 1365.
doi: 10.2307/2938320. |
[9] |
J. Jiang, Essential equilibrium points of n-person non-cooperative games. II,, Sci. Sinica, 12 (1963), 651.
|
[10] |
J. Jiang, Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games,, Sci. Sinica, 12 (1963), 951.
|
[11] |
E. Klein and A. Thompson, "Theory of Correspondences. Including Applications to Mathematical Economics,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1984).
|
[12] |
E. Kohlberg and J. Mertens, On the strategic stability of equilibria,, Econometrica, 54 (1986), 1003.
doi: 10.2307/1912320. |
[13] |
A. McLennan, Consistent conditional beliefs in noncooperative game theory,, Int. J. of Game Theory, 18 (1989), 175.
doi: 10.1007/BF01268156. |
[14] |
J. F. Nash, Jr., Equilibrium points in $n$-person games,, Proc. Natl. Acad. Sci. USA, 36 (1950), 48.
doi: 10.1073/pnas.36.1.48. |
[15] |
J. Nash, Non-cooperative games,, Ann. Math. (2), 54 (1951), 286.
doi: 10.2307/1969529. |
[16] |
B. O'Neill, Essential sets and fixed points,, Am. J. Math., 75 (1953), 497.
|
[17] |
R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games,, Int. J. of Game Theory, 4 (1975), 25.
doi: 10.1007/BF01766400. |
[18] |
L. Simon, Local perfection,, J. Economic Theory, 43 (1987), 134.
doi: 10.1016/0022-0531(87)90118-9. |
[19] |
L. Simon and M. Stinchcombe, Equilibrium refinement for infinite normal-form games,, Econometrica, 63 (1995), 1421.
doi: 10.2307/2171776. |
[20] |
A. Tychonoff, Ein fixpunktsatz,, Math. Ann., 111 (1935), 767.
|
[21] |
E. van Damme, "Stability and Perfection of Nash Equilibria,", Second edition, (1991).
|
[22] |
W. Wu and J. Jiang, Essential equilibrium points of n-person non-cooperative games,, Sci. Sinica, 11 (1962), 1307.
|
[23] |
Y. Zhou, J. Yu and L. Wang, A new proof of existence of equilibria in infinite normal form games,, Appl. Math. Lett., 24 (2011), 253.
doi: 10.1016/j.aml.2010.09.014. |
[24] |
Y. Zhou, J. Yu and S. Xiang, Essential stability in games with infinitely many pure strategies,, Int. J. of Game Theory, 35 (2007), 493.
doi: 10.1007/s00182-006-0063-0. |
[25] |
Y. Zhou, J. Yu and S. Xiang, A metric on the space of finite measures with an application to fixed point theory,, Appl. Math. Lett., 21 (2008), 489.
doi: 10.1016/j.aml.2007.05.015. |
[1] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[2] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021 doi: 10.3934/fods.2021005 |
[3] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[4] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[5] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[6] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[7] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[8] |
Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204 |
[9] |
Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[10] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[11] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[12] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]