January  2012, 8(1): 179-187. doi: 10.3934/jimo.2012.8.179

Topological essentiality in infinite games

1. 

School of Mathematics and Computer Science, Guizhou Normal University, Guizhou, Guiyang 550001, China

2. 

Department of Mathematics, Guizhou Uniersity, Guizhou, Guiyang 550025, China

3. 

Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China

Received  February 2011 Revised  September 2011 Published  November 2011

By constructing a corresponding Nash map, we prove that every infinite game with compact metrizable sets of strategies and continuous payoffs has such a topological essential component that contains a minimal payoff-wise essential set containing a stable set, and deduce that every topological essential equilibrium is payoff-wise essential and so is perfect.
Citation: Yonghui Zhou, Jian Yu, Long Wang. Topological essentiality in infinite games. Journal of Industrial & Management Optimization, 2012, 8 (1) : 179-187. doi: 10.3934/jimo.2012.8.179
References:
[1]

N. Al-Najjar, Strategically stable equilibria in games with infinitely many pure strategies,, Math. Soc. Sci., 29 (1995), 151.  doi: 10.1016/0165-4896(94)00765-Z.  Google Scholar

[2]

P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968).   Google Scholar

[3]

K. Fan, Fixed-point and minimax theorems in locally convex linear spaces,, Proc. Natl. Acad. Sci. USA, 38 (1952), 121.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[4]

D. Fudenberg and D. Levine, Subgame perfect equilibria of finite- and infinite-horizon games,, J. Economic Theory, 31 (1983), 251.   Google Scholar

[5]

D. Fudenberg and D. Levine, Limit games and limit equilibria,, J. Economic Theory, 38 (1986), 261.  doi: 10.1016/0022-0531(86)90118-3.  Google Scholar

[6]

I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points,, Proc. Amer. Math. Soc., 3 (1952), 170.   Google Scholar

[7]

S. Govindan and R. Wilson, Essential equilibria,, Proc. Natl. Acad. Sci. USA, 102 (2005), 15706.  doi: 10.1073/pnas.0506796102.  Google Scholar

[8]

J. Hillas, On the definition of the strategic stability of equilibria,, Econometrica, 58 (1990), 1365.  doi: 10.2307/2938320.  Google Scholar

[9]

J. Jiang, Essential equilibrium points of n-person non-cooperative games. II,, Sci. Sinica, 12 (1963), 651.   Google Scholar

[10]

J. Jiang, Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games,, Sci. Sinica, 12 (1963), 951.   Google Scholar

[11]

E. Klein and A. Thompson, "Theory of Correspondences. Including Applications to Mathematical Economics,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1984).   Google Scholar

[12]

E. Kohlberg and J. Mertens, On the strategic stability of equilibria,, Econometrica, 54 (1986), 1003.  doi: 10.2307/1912320.  Google Scholar

[13]

A. McLennan, Consistent conditional beliefs in noncooperative game theory,, Int. J. of Game Theory, 18 (1989), 175.  doi: 10.1007/BF01268156.  Google Scholar

[14]

J. F. Nash, Jr., Equilibrium points in $n$-person games,, Proc. Natl. Acad. Sci. USA, 36 (1950), 48.  doi: 10.1073/pnas.36.1.48.  Google Scholar

[15]

J. Nash, Non-cooperative games,, Ann. Math. (2), 54 (1951), 286.  doi: 10.2307/1969529.  Google Scholar

[16]

B. O'Neill, Essential sets and fixed points,, Am. J. Math., 75 (1953), 497.   Google Scholar

[17]

R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games,, Int. J. of Game Theory, 4 (1975), 25.  doi: 10.1007/BF01766400.  Google Scholar

[18]

L. Simon, Local perfection,, J. Economic Theory, 43 (1987), 134.  doi: 10.1016/0022-0531(87)90118-9.  Google Scholar

[19]

L. Simon and M. Stinchcombe, Equilibrium refinement for infinite normal-form games,, Econometrica, 63 (1995), 1421.  doi: 10.2307/2171776.  Google Scholar

[20]

A. Tychonoff, Ein fixpunktsatz,, Math. Ann., 111 (1935), 767.   Google Scholar

[21]

E. van Damme, "Stability and Perfection of Nash Equilibria,", Second edition, (1991).   Google Scholar

[22]

W. Wu and J. Jiang, Essential equilibrium points of n-person non-cooperative games,, Sci. Sinica, 11 (1962), 1307.   Google Scholar

[23]

Y. Zhou, J. Yu and L. Wang, A new proof of existence of equilibria in infinite normal form games,, Appl. Math. Lett., 24 (2011), 253.  doi: 10.1016/j.aml.2010.09.014.  Google Scholar

[24]

Y. Zhou, J. Yu and S. Xiang, Essential stability in games with infinitely many pure strategies,, Int. J. of Game Theory, 35 (2007), 493.  doi: 10.1007/s00182-006-0063-0.  Google Scholar

[25]

Y. Zhou, J. Yu and S. Xiang, A metric on the space of finite measures with an application to fixed point theory,, Appl. Math. Lett., 21 (2008), 489.  doi: 10.1016/j.aml.2007.05.015.  Google Scholar

show all references

References:
[1]

N. Al-Najjar, Strategically stable equilibria in games with infinitely many pure strategies,, Math. Soc. Sci., 29 (1995), 151.  doi: 10.1016/0165-4896(94)00765-Z.  Google Scholar

[2]

P. Billingsley, "Convergence of Probability Measures,", John Wiley & Sons, (1968).   Google Scholar

[3]

K. Fan, Fixed-point and minimax theorems in locally convex linear spaces,, Proc. Natl. Acad. Sci. USA, 38 (1952), 121.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[4]

D. Fudenberg and D. Levine, Subgame perfect equilibria of finite- and infinite-horizon games,, J. Economic Theory, 31 (1983), 251.   Google Scholar

[5]

D. Fudenberg and D. Levine, Limit games and limit equilibria,, J. Economic Theory, 38 (1986), 261.  doi: 10.1016/0022-0531(86)90118-3.  Google Scholar

[6]

I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points,, Proc. Amer. Math. Soc., 3 (1952), 170.   Google Scholar

[7]

S. Govindan and R. Wilson, Essential equilibria,, Proc. Natl. Acad. Sci. USA, 102 (2005), 15706.  doi: 10.1073/pnas.0506796102.  Google Scholar

[8]

J. Hillas, On the definition of the strategic stability of equilibria,, Econometrica, 58 (1990), 1365.  doi: 10.2307/2938320.  Google Scholar

[9]

J. Jiang, Essential equilibrium points of n-person non-cooperative games. II,, Sci. Sinica, 12 (1963), 651.   Google Scholar

[10]

J. Jiang, Essential component of the set of fixed points of the multivalued mappings and its application to the theory of games,, Sci. Sinica, 12 (1963), 951.   Google Scholar

[11]

E. Klein and A. Thompson, "Theory of Correspondences. Including Applications to Mathematical Economics,", Canadian Mathematical Society Series of Monographs and Advanced Texts, (1984).   Google Scholar

[12]

E. Kohlberg and J. Mertens, On the strategic stability of equilibria,, Econometrica, 54 (1986), 1003.  doi: 10.2307/1912320.  Google Scholar

[13]

A. McLennan, Consistent conditional beliefs in noncooperative game theory,, Int. J. of Game Theory, 18 (1989), 175.  doi: 10.1007/BF01268156.  Google Scholar

[14]

J. F. Nash, Jr., Equilibrium points in $n$-person games,, Proc. Natl. Acad. Sci. USA, 36 (1950), 48.  doi: 10.1073/pnas.36.1.48.  Google Scholar

[15]

J. Nash, Non-cooperative games,, Ann. Math. (2), 54 (1951), 286.  doi: 10.2307/1969529.  Google Scholar

[16]

B. O'Neill, Essential sets and fixed points,, Am. J. Math., 75 (1953), 497.   Google Scholar

[17]

R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games,, Int. J. of Game Theory, 4 (1975), 25.  doi: 10.1007/BF01766400.  Google Scholar

[18]

L. Simon, Local perfection,, J. Economic Theory, 43 (1987), 134.  doi: 10.1016/0022-0531(87)90118-9.  Google Scholar

[19]

L. Simon and M. Stinchcombe, Equilibrium refinement for infinite normal-form games,, Econometrica, 63 (1995), 1421.  doi: 10.2307/2171776.  Google Scholar

[20]

A. Tychonoff, Ein fixpunktsatz,, Math. Ann., 111 (1935), 767.   Google Scholar

[21]

E. van Damme, "Stability and Perfection of Nash Equilibria,", Second edition, (1991).   Google Scholar

[22]

W. Wu and J. Jiang, Essential equilibrium points of n-person non-cooperative games,, Sci. Sinica, 11 (1962), 1307.   Google Scholar

[23]

Y. Zhou, J. Yu and L. Wang, A new proof of existence of equilibria in infinite normal form games,, Appl. Math. Lett., 24 (2011), 253.  doi: 10.1016/j.aml.2010.09.014.  Google Scholar

[24]

Y. Zhou, J. Yu and S. Xiang, Essential stability in games with infinitely many pure strategies,, Int. J. of Game Theory, 35 (2007), 493.  doi: 10.1007/s00182-006-0063-0.  Google Scholar

[25]

Y. Zhou, J. Yu and S. Xiang, A metric on the space of finite measures with an application to fixed point theory,, Appl. Math. Lett., 21 (2008), 489.  doi: 10.1016/j.aml.2007.05.015.  Google Scholar

[1]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[2]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[3]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[4]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[5]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[6]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[7]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[8]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[9]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[10]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[11]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[12]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]