January  2012, 8(1): 229-242. doi: 10.3934/jimo.2012.8.229

On the triality theory for a quartic polynomial optimization problem

1. 

School of Sciences, Information Technology and Engineering, University of Ballarat, Victoria 3353, Australia

2. 

School of Science, Information Technology and Engineering, University of Ballarat, Victoria 3353, Australia

Received  July 2011 Revised  September 2011 Published  November 2011

This paper presents a detailed proof of the triality theorem for a class of fourth-order polynomial optimization problems. The method is based on linear algebra but it solves an open problem on the double-min duality. Results show that the triality theory holds strongly in the tri-duality form for our problem if the primal problem and its canonical dual have the same dimension; otherwise, both the canonical min-max duality and the double-max duality still hold strongly, but the double-min duality holds weakly in a symmetrical form. Some numerical examples are presented to illustrate that this theory can be used to identify not only the global minimum, but also the local minimum and local maximum.
Citation: David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229
References:
[1]

D. Y. Gao, Post-buckling analysis and anomalous dual variational problems in nonlinear beam theory,, in, (1996).   Google Scholar

[2]

D. Y. Gao, "Duality Principles in Nonconvex Systems: Theory, Methods and Applications,", Nonconvex Optimization and its Applications, 39 (2000).   Google Scholar

[3]

D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization problems. Theory, methods and applications of optimization,, Optim., 52 (2003), 467.  doi: 10.1080/02331930310001611501.  Google Scholar

[4]

D. Y. Gao, Canonical duality theory: Theory, method, and applications in global optimization,, Comput. Chem., 33 (2009), 1964.  doi: 10.1016/j.compchemeng.2009.06.009.  Google Scholar

[5]

D. Y. Gao and R. W. Ogden, Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation,, Quart. J. Mech. Appl. Math., 61 (2008), 497.  doi: 10.1093/qjmam/hbn014.  Google Scholar

[6]

D. Y. Gao and H. D. Sherali, Canonical duality theory: Connection between nonconvex mechanics and global optimization,, in, 17 (2009), 257.   Google Scholar

[7]

D. Y. Gao and H. F. Yu, Multi-scale modelling and canonical dual finite element method in phase transitions of solids,, International Journal of Solids and Structures, 45 (2008), 3660.  doi: 10.1016/j.ijsolstr.2007.08.027.  Google Scholar

[8]

J. Gallier, The Schur complement and symmetric positive semidefinite (and definite) matrices,, \url{http://www.cis.upenn.edu/~jean/schur-comp.pdf}., ().   Google Scholar

[9]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).   Google Scholar

[10]

A. Jaffe, Constructive quantum field theory,, in, (2000), 111.   Google Scholar

[11]

T. W. B. Kibble, Phase transitions and topological defects in the early universe,, Aust. J. Phys., 50 (1997), 697.  doi: 10.1071/P96076.  Google Scholar

[12]

J. S. Rowlinson, Translation of J. D. van der Waals' "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density",, J. Statist. Phys., 20 (1979), 197.  doi: 10.1007/BF01011513.  Google Scholar

[13]

M. D. Voisei and C. Zălinescu, Some remarks concerning Gao-Strang's complementary gap function,, Applicable Analysis, 90 (2010), 1111.  doi: 10.1080/00036811.2010.483427.  Google Scholar

[14]

M. D. Voisei and C. Zălinescu, Counterexamples to some triality and tri-duality results,, J. Glob. Optim., 49 (2011), 173.  doi: 10.1007/s10898-010-9592-y.  Google Scholar

show all references

References:
[1]

D. Y. Gao, Post-buckling analysis and anomalous dual variational problems in nonlinear beam theory,, in, (1996).   Google Scholar

[2]

D. Y. Gao, "Duality Principles in Nonconvex Systems: Theory, Methods and Applications,", Nonconvex Optimization and its Applications, 39 (2000).   Google Scholar

[3]

D. Y. Gao, Perfect duality theory and complete solutions to a class of global optimization problems. Theory, methods and applications of optimization,, Optim., 52 (2003), 467.  doi: 10.1080/02331930310001611501.  Google Scholar

[4]

D. Y. Gao, Canonical duality theory: Theory, method, and applications in global optimization,, Comput. Chem., 33 (2009), 1964.  doi: 10.1016/j.compchemeng.2009.06.009.  Google Scholar

[5]

D. Y. Gao and R. W. Ogden, Multiple solutions to non-convex variational problems with implications for phase transitions and numerical computation,, Quart. J. Mech. Appl. Math., 61 (2008), 497.  doi: 10.1093/qjmam/hbn014.  Google Scholar

[6]

D. Y. Gao and H. D. Sherali, Canonical duality theory: Connection between nonconvex mechanics and global optimization,, in, 17 (2009), 257.   Google Scholar

[7]

D. Y. Gao and H. F. Yu, Multi-scale modelling and canonical dual finite element method in phase transitions of solids,, International Journal of Solids and Structures, 45 (2008), 3660.  doi: 10.1016/j.ijsolstr.2007.08.027.  Google Scholar

[8]

J. Gallier, The Schur complement and symmetric positive semidefinite (and definite) matrices,, \url{http://www.cis.upenn.edu/~jean/schur-comp.pdf}., ().   Google Scholar

[9]

R. A. Horn and C. R. Johnson, "Matrix Analysis,", Cambridge University Press, (1985).   Google Scholar

[10]

A. Jaffe, Constructive quantum field theory,, in, (2000), 111.   Google Scholar

[11]

T. W. B. Kibble, Phase transitions and topological defects in the early universe,, Aust. J. Phys., 50 (1997), 697.  doi: 10.1071/P96076.  Google Scholar

[12]

J. S. Rowlinson, Translation of J. D. van der Waals' "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density",, J. Statist. Phys., 20 (1979), 197.  doi: 10.1007/BF01011513.  Google Scholar

[13]

M. D. Voisei and C. Zălinescu, Some remarks concerning Gao-Strang's complementary gap function,, Applicable Analysis, 90 (2010), 1111.  doi: 10.1080/00036811.2010.483427.  Google Scholar

[14]

M. D. Voisei and C. Zălinescu, Counterexamples to some triality and tri-duality results,, J. Glob. Optim., 49 (2011), 173.  doi: 10.1007/s10898-010-9592-y.  Google Scholar

[1]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[4]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[5]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[6]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[7]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[8]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[9]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[10]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[11]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[14]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[15]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]