-
Previous Article
A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining
- JIMO Home
- This Issue
- Next Article
Approximation schemes for scheduling a maintenance and linear deteriorating jobs
1. | Faculty of Science, Ningbo University, Ningbo, 315211, China |
2. | College of Computer Science, Zhejiang University, Hangzhou, 310027, China |
References:
[1] |
S. Brown and U. Yechiali, Scheduling deteriorating jobs on a single process,, Operations Research, 38 (1990), 495.
doi: 10.1287/opre.38.3.495. |
[2] |
T. C. E. Cheng, Q. Ding and B. M. T. Lin, A concise survey of scheduling with time-dependent processing time,, European Journal of Operation Research, 152 (2004), 1.
doi: 10.1016/S0377-2217(02)00909-8. |
[3] |
M. R. Garey and D. S. Johnson, "Computers and Intractability. A Guide to the Theory of NP-Completeness,", A Series of Books in the Mathematical Sciences, (1979).
|
[4] |
S. Gawiejnowicz, Scheduling deteriorating jobs subject to job or machine availability constraints,, European Journal of Operational Research, 180 (2007), 472.
doi: 10.1016/j.ejor.2006.04.021. |
[5] |
S. Gawiejnowicz and A. Kononov, Complexity and approximability of scheduling resumable proportionally deteriorating jobs,, European Journal of Operational Research, 200 (2010), 305.
doi: 10.1016/j.ejor.2008.12.014. |
[6] |
G. Gens and E. Levner, Fast approximation algorithm for job sequencing with deadlines,, Discrete Applied Mathematics, 3 (1981), 313.
doi: 10.1016/0166-218X(81)90008-1. |
[7] |
R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey,, Annals of Discrete Mathematics, 5 (1979), 287.
doi: 10.1016/S0167-5060(08)70356-X. |
[8] |
M. Ji, Y. He and T. C. E. Cheng, Scheduling linear deteriorating jobs with an availability constraint on a single machine,, Theoretical Computer Science, 362 (2006), 115.
doi: 10.1016/j.tcs.2006.06.006. |
[9] |
M. Ji, Y. He and T. C. E. Cheng, Single-machine scheduling with periodic maintenance to minimize makespan,, Computers & Operations Research, 34 (2007), 1764.
doi: 10.1016/j.cor.2005.05.034. |
[10] |
M. Ji and T. C. E. Cheng, Parallel-machine scheduling with simple linear deterioration to minimize total completion time,, European Journal of Operational Research, 188 (2008), 342.
doi: 10.1016/j.ejor.2007.04.050. |
[11] |
C.-Y. Lee, Machine scheduling with an availability constraint. Optimization applications in scheduling theory,, Journal of Global Optimization, 9 (1996), 395.
doi: 10.1007/BF00121681. |
[12] |
P. Liu and L. Tang, Two-agent scheduling with linear deteriorating jobs on a single machine,, in, 5092 (2008), 642.
|
[13] |
Y. Ma, C. Chu and C. Zuo, A survey of scheduling with deterministic machine availability constraints,, Computers & Industrial Engineering, 58 (2010), 199.
doi: 10.1016/j.cie.2009.04.014. |
[14] |
G. Mosheiov, Scheduling jobs under simple linear deterioration,, Computers & Operations Research, 21 (1994), 653.
doi: 10.1016/0305-0548(94)90080-9. |
[15] |
E. Sanlaville and G. Schmidt, Machine scheduling with availability constraints,, Acta Informatica, 35 (1998), 795.
doi: 10.1007/s002360050143. |
[16] |
G. J. Woeginger, When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?,, INFORMS Journal on Computing, 12 (2000), 57.
doi: 10.1287/ijoc.12.1.57.11901. |
[17] |
C.-C. Wu and W.-C. Lee, Scheduling linear deteriorating jobs to minimize makespan with an availability constraint on a single machine,, Information Processing Letters, 87 (2003), 89.
doi: 10.1016/S0020-0190(03)00262-X. |
[18] |
J. C. P. Yu, H. M. Wee and K. J. Wang, Supply chain partnership for Three-Echelon deteriorating inventory model,, Journal of Industrial and Management Optimization, 4 (2008), 827.
doi: 10.3934/jimo.2008.4.827. |
show all references
References:
[1] |
S. Brown and U. Yechiali, Scheduling deteriorating jobs on a single process,, Operations Research, 38 (1990), 495.
doi: 10.1287/opre.38.3.495. |
[2] |
T. C. E. Cheng, Q. Ding and B. M. T. Lin, A concise survey of scheduling with time-dependent processing time,, European Journal of Operation Research, 152 (2004), 1.
doi: 10.1016/S0377-2217(02)00909-8. |
[3] |
M. R. Garey and D. S. Johnson, "Computers and Intractability. A Guide to the Theory of NP-Completeness,", A Series of Books in the Mathematical Sciences, (1979).
|
[4] |
S. Gawiejnowicz, Scheduling deteriorating jobs subject to job or machine availability constraints,, European Journal of Operational Research, 180 (2007), 472.
doi: 10.1016/j.ejor.2006.04.021. |
[5] |
S. Gawiejnowicz and A. Kononov, Complexity and approximability of scheduling resumable proportionally deteriorating jobs,, European Journal of Operational Research, 200 (2010), 305.
doi: 10.1016/j.ejor.2008.12.014. |
[6] |
G. Gens and E. Levner, Fast approximation algorithm for job sequencing with deadlines,, Discrete Applied Mathematics, 3 (1981), 313.
doi: 10.1016/0166-218X(81)90008-1. |
[7] |
R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey,, Annals of Discrete Mathematics, 5 (1979), 287.
doi: 10.1016/S0167-5060(08)70356-X. |
[8] |
M. Ji, Y. He and T. C. E. Cheng, Scheduling linear deteriorating jobs with an availability constraint on a single machine,, Theoretical Computer Science, 362 (2006), 115.
doi: 10.1016/j.tcs.2006.06.006. |
[9] |
M. Ji, Y. He and T. C. E. Cheng, Single-machine scheduling with periodic maintenance to minimize makespan,, Computers & Operations Research, 34 (2007), 1764.
doi: 10.1016/j.cor.2005.05.034. |
[10] |
M. Ji and T. C. E. Cheng, Parallel-machine scheduling with simple linear deterioration to minimize total completion time,, European Journal of Operational Research, 188 (2008), 342.
doi: 10.1016/j.ejor.2007.04.050. |
[11] |
C.-Y. Lee, Machine scheduling with an availability constraint. Optimization applications in scheduling theory,, Journal of Global Optimization, 9 (1996), 395.
doi: 10.1007/BF00121681. |
[12] |
P. Liu and L. Tang, Two-agent scheduling with linear deteriorating jobs on a single machine,, in, 5092 (2008), 642.
|
[13] |
Y. Ma, C. Chu and C. Zuo, A survey of scheduling with deterministic machine availability constraints,, Computers & Industrial Engineering, 58 (2010), 199.
doi: 10.1016/j.cie.2009.04.014. |
[14] |
G. Mosheiov, Scheduling jobs under simple linear deterioration,, Computers & Operations Research, 21 (1994), 653.
doi: 10.1016/0305-0548(94)90080-9. |
[15] |
E. Sanlaville and G. Schmidt, Machine scheduling with availability constraints,, Acta Informatica, 35 (1998), 795.
doi: 10.1007/s002360050143. |
[16] |
G. J. Woeginger, When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?,, INFORMS Journal on Computing, 12 (2000), 57.
doi: 10.1287/ijoc.12.1.57.11901. |
[17] |
C.-C. Wu and W.-C. Lee, Scheduling linear deteriorating jobs to minimize makespan with an availability constraint on a single machine,, Information Processing Letters, 87 (2003), 89.
doi: 10.1016/S0020-0190(03)00262-X. |
[18] |
J. C. P. Yu, H. M. Wee and K. J. Wang, Supply chain partnership for Three-Echelon deteriorating inventory model,, Journal of Industrial and Management Optimization, 4 (2008), 827.
doi: 10.3934/jimo.2008.4.827. |
[1] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[2] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[3] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[4] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[5] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[6] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[7] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[8] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[9] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]