-
Previous Article
Robust portfolio selection with a combined WCVaR and factor model
- JIMO Home
- This Issue
-
Next Article
Minimizing equilibrium expected sojourn time via performance-based mixed threshold demand allocation in a multiple-server queueing environment
Fabric defect detection using multi-level tuned-matched Gabor filters
1. | Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China |
References:
[1] |
A. Bodnarova, M. Bennamoun and S. Latham, Optimal Gabor filters for textile flaw detection,, Pattern Recognition, 35 (2002), 2973.
doi: 10.1016/S0031-3203(02)00017-1. |
[2] |
J. G. Campell, C. Fraley, F. Murtagh and A. E. Raftery, Linear flaw detection in woven textiles using model-based clustering,, Pattern Recognition Letters, 18 (1997), 1539.
doi: 10.1016/S0167-8655(97)00148-7. |
[3] |
D. Casasent and J. S. Smokelin, Neural net design of macro Gabor wavelet filters for distortion-invariant object detection in clutter,, Opt. Eng., 33 (1994), 2264.
doi: 10.1117/12.172408. |
[4] |
D. Chetverikov and A. Hanbury, Finding defects in texture using regularity and local orientation,, Pattern Recognition, 35 (2002), 2165.
doi: 10.1016/S0031-3203(01)00188-1. |
[5] |
F. S. Cohen, Z. Fan and S. Attali, Automated inspection of textile fabrics using textural models,, IEEE Trans. Pattern Anal. Machine Intell., 13 (1991), 803.
doi: 10.1109/34.85670. |
[6] |
J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,, J. Optical Soc. Amer., 2 (1985), 1160.
doi: 10.1364/JOSAA.2.001160. |
[7] |
J. Escofet, R. Navarro, M. S. Millan and J. Pladelloreans, Detection of local defects in textiles webs using Gabor filters,, Opt. Eng., 37 (1998), 2297.
doi: 10.1117/1.601751. |
[8] |
D. E. Goldberg, "Genetic Algorithm in Search, Optimization and Machine Learning,", Addison-Wesley, (1989). Google Scholar |
[9] |
Graniteville Company, "Manual of Standard Fabric Defects in the Textile Industry,", South Carolina, (1975). Google Scholar |
[10] |
A. K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters,, Pattern Recognition, 24 (1991), 1167.
doi: 10.1016/0031-3203(91)90143-S. |
[11] |
K. L. Mak and P. Peng, Detecting defects in textile fabrics with optimal Gabor filters,, International Journal of Computer Science, 1 (2006), 1306. Google Scholar |
[12] |
R. Malhotra, K. R. Namuduru and N. Ranganathan, Gabor filter-based edge detection,, Pattern Recognition, 25 (1992), 1479.
doi: 10.1016/0031-3203(92)90121-X. |
[13] |
J. Malik and P. Perona, Prettentive texture discrimination with early vision mechanisms,, J. Opt. Soc. Am., A7 (1994), 923.
doi: 10.1364/JOSAA.7.000923. |
[14] |
S. G. Mallat, Multifrequency channel decomposition of images and wavelet models,, IEEE Trans. Acoust. Speech, 37 (1989), 2091.
doi: 10.1109/29.45554. |
[15] |
T. L. Mason, C. Emelle, J. van Berkel, A. M. Bagirov, F. Kampas and J. D. Pintér, Integrated production system optimization using global optimization techniques,, Journal of Industrial and Management Optimization, 3 (2007), 257.
doi: 10.3934/jimo.2007.3.257. |
[16] |
S. Ozdemir and A. Ercil, Markov random fields and Karhumen-loeve transforms for defect inspection of textile products,, Proc. IEEE Conf. Emerging Technologies and Factory Automation, 2 (1996), 697. Google Scholar |
[17] |
O. Pichler, A. Teuner and B. J. Hosticka, An unsupervised texture segmentation algorithm with feature space reduction and knowledge feedback,, IEEE Trans. Image Processing, 7 (1998), 53.
doi: 10.1109/83.650850. |
[18] |
D. A. Pollen and S. F. Ronner, Visual cortical neurons as localized spatial frequency filters,, IEEE Transactions on Systems, 13 (1983), 907. Google Scholar |
[19] |
T. Ray and R. Sarker, EA for solving combined machine layout and job assignment problems,, Journal of Industrial and Management Optimization, 4 (2008), 631.
doi: 10.3934/jimo.2008.4.631. |
[20] |
R. Sablatnig, Increasing flexibility for automatic visual inspection: The general analysis graph,, Machine Vision and Applications, 12 (2000), 158.
doi: 10.1007/s001380050135. |
[21] |
H. Sari-Sarraf and J. S. Goddard, Vision system for on-loom fabric inspection,, IEEE Trans. Ind. Appl., 35 (1999), 1252.
doi: 10.1109/28.806035. |
[22] |
K. Srinivasan, P. H. Dastoor, P. Radhakrishnaiah and S. Jayaraman, FDAS: A knowledge-based framework for analysis of defects in woven textile structures,, J. Textile Inst., 83 (1992), 431.
doi: 10.1080/00405009208631217. |
[23] |
A. Teuner, O. Pichler and B. J. Hosticka, Unsupervised texture segmentation of images using tuned matched Gabor filters,, IEEE Trans. Image Processing, 4 (1995), 863.
doi: 10.1109/83.388091. |
[24] |
D. M. Tsai and C.-Y. Heish, Automated surface inspection for directional textures,, Image Vis. Comput., 18 (1999), 49.
doi: 10.1016/S0262-8856(99)00009-8. |
[25] |
J. Wang, R. A. Campbell and R. J. Harwood, Automated inspection of carpets,, Proc. SPIE, 2345 (1995), 180.
doi: 10.1117/12.198873. |
[26] |
M. A. Webster and R. L. De Valois, Relationship between spatial frequency and orientation tuning of striate cortex cells,, J. Optical Soc. Amer., A2 (1985), 1124.
doi: 10.1364/JOSAA.2.001124. |
[27] |
C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435.
doi: 10.3934/jimo.2006.2.435. |
[28] |
K. F. C Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization,, Journal of Global Optimization, 28 (2004), 229.
doi: 10.1023/B:JOGO.0000015313.93974.b0. |
[29] |
Y. F. Zhang and R. R. Bresee, Fabric defect detection and classification using image analysis,, Text. Res. J., 65 (1995), 1.
doi: 10.1177/004051759506500101. |
show all references
References:
[1] |
A. Bodnarova, M. Bennamoun and S. Latham, Optimal Gabor filters for textile flaw detection,, Pattern Recognition, 35 (2002), 2973.
doi: 10.1016/S0031-3203(02)00017-1. |
[2] |
J. G. Campell, C. Fraley, F. Murtagh and A. E. Raftery, Linear flaw detection in woven textiles using model-based clustering,, Pattern Recognition Letters, 18 (1997), 1539.
doi: 10.1016/S0167-8655(97)00148-7. |
[3] |
D. Casasent and J. S. Smokelin, Neural net design of macro Gabor wavelet filters for distortion-invariant object detection in clutter,, Opt. Eng., 33 (1994), 2264.
doi: 10.1117/12.172408. |
[4] |
D. Chetverikov and A. Hanbury, Finding defects in texture using regularity and local orientation,, Pattern Recognition, 35 (2002), 2165.
doi: 10.1016/S0031-3203(01)00188-1. |
[5] |
F. S. Cohen, Z. Fan and S. Attali, Automated inspection of textile fabrics using textural models,, IEEE Trans. Pattern Anal. Machine Intell., 13 (1991), 803.
doi: 10.1109/34.85670. |
[6] |
J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,, J. Optical Soc. Amer., 2 (1985), 1160.
doi: 10.1364/JOSAA.2.001160. |
[7] |
J. Escofet, R. Navarro, M. S. Millan and J. Pladelloreans, Detection of local defects in textiles webs using Gabor filters,, Opt. Eng., 37 (1998), 2297.
doi: 10.1117/1.601751. |
[8] |
D. E. Goldberg, "Genetic Algorithm in Search, Optimization and Machine Learning,", Addison-Wesley, (1989). Google Scholar |
[9] |
Graniteville Company, "Manual of Standard Fabric Defects in the Textile Industry,", South Carolina, (1975). Google Scholar |
[10] |
A. K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters,, Pattern Recognition, 24 (1991), 1167.
doi: 10.1016/0031-3203(91)90143-S. |
[11] |
K. L. Mak and P. Peng, Detecting defects in textile fabrics with optimal Gabor filters,, International Journal of Computer Science, 1 (2006), 1306. Google Scholar |
[12] |
R. Malhotra, K. R. Namuduru and N. Ranganathan, Gabor filter-based edge detection,, Pattern Recognition, 25 (1992), 1479.
doi: 10.1016/0031-3203(92)90121-X. |
[13] |
J. Malik and P. Perona, Prettentive texture discrimination with early vision mechanisms,, J. Opt. Soc. Am., A7 (1994), 923.
doi: 10.1364/JOSAA.7.000923. |
[14] |
S. G. Mallat, Multifrequency channel decomposition of images and wavelet models,, IEEE Trans. Acoust. Speech, 37 (1989), 2091.
doi: 10.1109/29.45554. |
[15] |
T. L. Mason, C. Emelle, J. van Berkel, A. M. Bagirov, F. Kampas and J. D. Pintér, Integrated production system optimization using global optimization techniques,, Journal of Industrial and Management Optimization, 3 (2007), 257.
doi: 10.3934/jimo.2007.3.257. |
[16] |
S. Ozdemir and A. Ercil, Markov random fields and Karhumen-loeve transforms for defect inspection of textile products,, Proc. IEEE Conf. Emerging Technologies and Factory Automation, 2 (1996), 697. Google Scholar |
[17] |
O. Pichler, A. Teuner and B. J. Hosticka, An unsupervised texture segmentation algorithm with feature space reduction and knowledge feedback,, IEEE Trans. Image Processing, 7 (1998), 53.
doi: 10.1109/83.650850. |
[18] |
D. A. Pollen and S. F. Ronner, Visual cortical neurons as localized spatial frequency filters,, IEEE Transactions on Systems, 13 (1983), 907. Google Scholar |
[19] |
T. Ray and R. Sarker, EA for solving combined machine layout and job assignment problems,, Journal of Industrial and Management Optimization, 4 (2008), 631.
doi: 10.3934/jimo.2008.4.631. |
[20] |
R. Sablatnig, Increasing flexibility for automatic visual inspection: The general analysis graph,, Machine Vision and Applications, 12 (2000), 158.
doi: 10.1007/s001380050135. |
[21] |
H. Sari-Sarraf and J. S. Goddard, Vision system for on-loom fabric inspection,, IEEE Trans. Ind. Appl., 35 (1999), 1252.
doi: 10.1109/28.806035. |
[22] |
K. Srinivasan, P. H. Dastoor, P. Radhakrishnaiah and S. Jayaraman, FDAS: A knowledge-based framework for analysis of defects in woven textile structures,, J. Textile Inst., 83 (1992), 431.
doi: 10.1080/00405009208631217. |
[23] |
A. Teuner, O. Pichler and B. J. Hosticka, Unsupervised texture segmentation of images using tuned matched Gabor filters,, IEEE Trans. Image Processing, 4 (1995), 863.
doi: 10.1109/83.388091. |
[24] |
D. M. Tsai and C.-Y. Heish, Automated surface inspection for directional textures,, Image Vis. Comput., 18 (1999), 49.
doi: 10.1016/S0262-8856(99)00009-8. |
[25] |
J. Wang, R. A. Campbell and R. J. Harwood, Automated inspection of carpets,, Proc. SPIE, 2345 (1995), 180.
doi: 10.1117/12.198873. |
[26] |
M. A. Webster and R. L. De Valois, Relationship between spatial frequency and orientation tuning of striate cortex cells,, J. Optical Soc. Amer., A2 (1985), 1124.
doi: 10.1364/JOSAA.2.001124. |
[27] |
C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435.
doi: 10.3934/jimo.2006.2.435. |
[28] |
K. F. C Yiu, Y. Liu and K. L. Teo, A hybrid descent method for global optimization,, Journal of Global Optimization, 28 (2004), 229.
doi: 10.1023/B:JOGO.0000015313.93974.b0. |
[29] |
Y. F. Zhang and R. R. Bresee, Fabric defect detection and classification using image analysis,, Text. Res. J., 65 (1995), 1.
doi: 10.1177/004051759506500101. |
[1] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[2] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[3] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[4] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[5] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[6] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]