April  2012, 8(2): 343-362. doi: 10.3934/jimo.2012.8.343

Robust portfolio selection with a combined WCVaR and factor model

1. 

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Received  March 2011 Revised  August 2011 Published  April 2012

In this paper, a portfolio selection model with a combined Worst-Case Conditional Value-at-Risk (WCVaR) and Multi-Factor Model is proposed. It is shown that the probability distributions in the definition of WCVaR can be determined by specifying the mean vectors under the assumption of multivariate normal distribution with a fixed variance-covariance matrix. The WCVaR minimization problem is then reformulated as a linear programming problem. In our numerical experiments, to compare the proposed model with the traditional mean variance model, we solve the two models using the real market data and present the efficient frontiers to illustrate the difference. The comparison reveals that the WCVaR minimization model is more robust than the traditional one in a market recession period and it can be used in a long-term investment.
Citation: Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343
References:
[1]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.  doi: 10.1111/1467-9965.00068.  Google Scholar

[2]

T. S. Beder, VAR: Seductive but dangerous,, Financial Analysts Journal, 51 (1995), 12.  doi: 10.2469/faj.v51.n5.1932.  Google Scholar

[3]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs,, Operations Research Letter, 25 (1999), 1.  doi: 10.1016/S0167-6377(99)00016-4.  Google Scholar

[4]

L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach,, Operations Research, 51 (2003), 543.  doi: 10.1287/opre.51.4.543.16101.  Google Scholar

[5]

F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: Contributions from operations research and finance,, Annals of Operations Research, 176 (2010), 191.  doi: 10.1007/s10479-009-0515-6.  Google Scholar

[6]

E. F. Fama, Efficient capital markets: A review of theory and empirical work, in "Frontiers of Quantitative Economics" (Invited Papers, Econometric Soc. Winter Meetings, New York, 1969),, Contributions to Economic Analysis, (1971), 309.   Google Scholar

[7]

E. F. Fama, Efficient capital markets: II,, Journal of Finance, 46 (1991), 1575.  doi: 10.2307/2328565.  Google Scholar

[8]

E. F. Fama and K. R. French, Common risk factors in the returns on stocks and bonds,, Journal of Financial Economics, 33 (1993), 3.  doi: 10.1016/0304-405X(93)90023-5.  Google Scholar

[9]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems,, Mathematics of Operations Research, 28 (2003), 1.  doi: 10.1287/moor.28.1.1.14260.  Google Scholar

[10]

A. Kreinin, L. Merkoulovitch, D. Rosen and Z. Michael, Measuring portfolio risk using quasi Monte Carlo methods,, Algo Research Quarterly, 1 (1998), 17.   Google Scholar

[11]

J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets,, The Review of Economics and Statistics, 47 (1956), 13.  doi: 10.2307/1924119.  Google Scholar

[12]

H. M. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.  doi: 10.2307/2975974.  Google Scholar

[13]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21.   Google Scholar

[14]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distribution,, Journal of Banking and Finance, 26 (2002), 1443.  doi: 10.1016/S0378-4266(02)00271-6.  Google Scholar

[15]

S. A. Ross, The arbitrage theory of capital asset pricing,, Journal of Economic Theory, 13 (1976), 341.  doi: 10.1016/0022-0531(76)90046-6.  Google Scholar

[16]

W. F. Sharp, Capital asset prices: A theory of market equilibrium under conditions of risk,, Journal of Finance, 19 (1964), 425.  doi: 10.2307/2977928.  Google Scholar

[17]

S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management,, Operations Research, 57 (2009), 1155.  doi: 10.1287/opre.1080.0684.  Google Scholar

show all references

References:
[1]

P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.  doi: 10.1111/1467-9965.00068.  Google Scholar

[2]

T. S. Beder, VAR: Seductive but dangerous,, Financial Analysts Journal, 51 (1995), 12.  doi: 10.2469/faj.v51.n5.1932.  Google Scholar

[3]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs,, Operations Research Letter, 25 (1999), 1.  doi: 10.1016/S0167-6377(99)00016-4.  Google Scholar

[4]

L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach,, Operations Research, 51 (2003), 543.  doi: 10.1287/opre.51.4.543.16101.  Google Scholar

[5]

F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: Contributions from operations research and finance,, Annals of Operations Research, 176 (2010), 191.  doi: 10.1007/s10479-009-0515-6.  Google Scholar

[6]

E. F. Fama, Efficient capital markets: A review of theory and empirical work, in "Frontiers of Quantitative Economics" (Invited Papers, Econometric Soc. Winter Meetings, New York, 1969),, Contributions to Economic Analysis, (1971), 309.   Google Scholar

[7]

E. F. Fama, Efficient capital markets: II,, Journal of Finance, 46 (1991), 1575.  doi: 10.2307/2328565.  Google Scholar

[8]

E. F. Fama and K. R. French, Common risk factors in the returns on stocks and bonds,, Journal of Financial Economics, 33 (1993), 3.  doi: 10.1016/0304-405X(93)90023-5.  Google Scholar

[9]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems,, Mathematics of Operations Research, 28 (2003), 1.  doi: 10.1287/moor.28.1.1.14260.  Google Scholar

[10]

A. Kreinin, L. Merkoulovitch, D. Rosen and Z. Michael, Measuring portfolio risk using quasi Monte Carlo methods,, Algo Research Quarterly, 1 (1998), 17.   Google Scholar

[11]

J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets,, The Review of Economics and Statistics, 47 (1956), 13.  doi: 10.2307/1924119.  Google Scholar

[12]

H. M. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.  doi: 10.2307/2975974.  Google Scholar

[13]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21.   Google Scholar

[14]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distribution,, Journal of Banking and Finance, 26 (2002), 1443.  doi: 10.1016/S0378-4266(02)00271-6.  Google Scholar

[15]

S. A. Ross, The arbitrage theory of capital asset pricing,, Journal of Economic Theory, 13 (1976), 341.  doi: 10.1016/0022-0531(76)90046-6.  Google Scholar

[16]

W. F. Sharp, Capital asset prices: A theory of market equilibrium under conditions of risk,, Journal of Finance, 19 (1964), 425.  doi: 10.2307/2977928.  Google Scholar

[17]

S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management,, Operations Research, 57 (2009), 1155.  doi: 10.1287/opre.1080.0684.  Google Scholar

[1]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[2]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[5]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[8]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[9]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[10]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[11]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[12]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[13]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[14]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[17]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[18]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[19]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[20]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]