April  2012, 8(2): 363-378. doi: 10.3934/jimo.2012.8.363

Analysis of airline seat control with region factor

1. 

College of Information Technology, Shanghai Ocean University, Shanghai, 201306, China

Received  January 2011 Revised  September 2011 Published  April 2012

Due to the lower consumption level to the flights in some regions, the flights' vacancy rate is usually very high and the service level is low. To airlines, the common procedure to handle such problems is to employ different price systems. But this in return results in unsatisfying effects. In this paper we discussed the above issue from another standpoint. Firstly, we introduced a parameter, called region factor, and then constructed a stochastic dynamic model of a single-leg flight related to it. Secondly, we derived some monotone properties for the expected revenue functions. These properties ensured that we could choose appropriate region factor to recover the high vacancy rate caused by the lower consumption levels, but also adopt the similar optimal threshold control strategy as the traditional revenue management did. Furthermore, in addition to improving the service levels, the proper region factor can increase the total revenue sometimes. Lastly, Numerical results were used to illustrate properties of the model.
Citation: Yanming Ge. Analysis of airline seat control with region factor. Journal of Industrial & Management Optimization, 2012, 8 (2) : 363-378. doi: 10.3934/jimo.2012.8.363
References:
[1]

P. P. Belobaba, Airline yield management: An overview of seat inventory control,, Transportation Science, 21 (1987), 63.  doi: 10.1287/trsc.21.2.63.  Google Scholar

[2]

P. P. Belobaba, Application of a probabilistic decision model to airline seat inventory control,, Operations Research, 37 (1989), 183.  doi: 10.1287/opre.37.2.183.  Google Scholar

[3]

S. I. Birbil, J. B. G. Frenk, J. A. S. Gromicho and S. Zhang, The role of robust optimization in single-leg airline evenue management,, Management Science, 55 (2009), 148.  doi: 10.1287/mnsc.1070.0843.  Google Scholar

[4]

G. R. Bitran and S. M. Gilbert, Managing hotel reservations with uncertain arrivals,, Operations Research, 44 (1996), 35.  doi: 10.1287/opre.44.1.35.  Google Scholar

[5]

R. Boel and P. Varaiya, Optimal control of jump processes,, SIAM J. Control Optimization, 15 (1977), 92.  doi: 10.1137/0315008.  Google Scholar

[6]

P. Brémaud, Bang-bang controls of point processes,, Adv. Appl. Probab., 8 (1976), 385.   Google Scholar

[7]

P. Brémaud, "Point Processes and Queues, Martingale Dynamics,", Springer-Verlag, (1981).   Google Scholar

[8]

Y. Feng and G. Gallego, Optimal stopping times for end of season sales and optimal starting times for promotional fares,, Management Science, 41 (1995), 1371.  doi: 10.1287/mnsc.41.8.1371.  Google Scholar

[9]

Y. Feng and B. Xiao, Maximizing revenue of perishable assets with risk analysis,, Operations Research, 47 (1999), 337.  doi: 10.1287/opre.47.2.337.  Google Scholar

[10]

Y. Feng and B. Xiao, Optimal policies of yield management with multiple predetermined prices,, Operations Research, 48 (2000), 332.  doi: 10.1287/opre.48.2.332.13373.  Google Scholar

[11]

Y. Feng and B. Xiao, A dynamic airline seat inventory control model and its optimal policy,, Operations Research, 49 (2001), 938.  doi: 10.1287/opre.49.6.938.10026.  Google Scholar

[12]

Y. Feng and B. Xiao, A continuous-time seat control model for single-leg flights with no-shows and optimal overbooking upper bound,, European Journal of Operational Research, 174 (2006), 1298.  doi: 10.1016/j.ejor.2005.05.008.  Google Scholar

[13]

Y. Feng, P. Lin and B. Xiao, An analysis of airline seat control with cancellations, in "Stochastic Modelling and Optimization, with Applications in Queues, Finances, and Supply Chains" (eds. D. D. Yao, H. Zhang and X. Y. Zhou),, Springer-Verlag, (2002).   Google Scholar

[14]

W. H. Fleming and H. M. Soner, "Controlled Markov Process and Viscosity Solutions,", Second edition, 25 (2006).   Google Scholar

[15]

M. k. Geraghty and E. Johnson, Revenue management saves national car rental,, Inerfaces, 27 (1997), 107.  doi: 10.1287/inte.27.1.107.  Google Scholar

[16]

Y. Ge, Z. Yin and Y. Xu, Overbooking with transference option for flights,, Journal of Industrial and Management Optimization, 7 (2011), 449.  doi: 10.3934/jimo.2011.7.449.  Google Scholar

[17]

S. P. Ladany and A. Arbel, Optimal cruise-liner passenger cabin pricing policy,, European Journal of Operational Research, 55 (1991), 136.  doi: 10.1016/0377-2217(91)90219-L.  Google Scholar

[18]

C. J. Lautenbacher, The underlying Markov decision process in the single-leg airline yield management problem,, Transportation Science, 34 (1999), 136.  doi: 10.1287/trsc.33.2.136.  Google Scholar

[19]

T. C. Lee and M. Hersh, A model for dynamic airline seat inventory control with multiple seat bookings,, Transportation Science, 27 (1993), 252.  doi: 10.1287/trsc.27.3.252.  Google Scholar

[20]

Y. Liang, Solution to the continuous time dynamic yield management model,, Transportation Science, 33 (1999), 117.  doi: 10.1287/trsc.33.1.117.  Google Scholar

[21]

K. Littlewood, Forecasting and control of passenger bookings,, 12th AGIFORS Symposium Proceedings, (1972), 103.   Google Scholar

[22]

K. T. Talluri and G. J. Van Ryzin, "The Theory and Practice of Revenue Management,", International Series in Operations Research & Management Science, 68 (2004).   Google Scholar

show all references

References:
[1]

P. P. Belobaba, Airline yield management: An overview of seat inventory control,, Transportation Science, 21 (1987), 63.  doi: 10.1287/trsc.21.2.63.  Google Scholar

[2]

P. P. Belobaba, Application of a probabilistic decision model to airline seat inventory control,, Operations Research, 37 (1989), 183.  doi: 10.1287/opre.37.2.183.  Google Scholar

[3]

S. I. Birbil, J. B. G. Frenk, J. A. S. Gromicho and S. Zhang, The role of robust optimization in single-leg airline evenue management,, Management Science, 55 (2009), 148.  doi: 10.1287/mnsc.1070.0843.  Google Scholar

[4]

G. R. Bitran and S. M. Gilbert, Managing hotel reservations with uncertain arrivals,, Operations Research, 44 (1996), 35.  doi: 10.1287/opre.44.1.35.  Google Scholar

[5]

R. Boel and P. Varaiya, Optimal control of jump processes,, SIAM J. Control Optimization, 15 (1977), 92.  doi: 10.1137/0315008.  Google Scholar

[6]

P. Brémaud, Bang-bang controls of point processes,, Adv. Appl. Probab., 8 (1976), 385.   Google Scholar

[7]

P. Brémaud, "Point Processes and Queues, Martingale Dynamics,", Springer-Verlag, (1981).   Google Scholar

[8]

Y. Feng and G. Gallego, Optimal stopping times for end of season sales and optimal starting times for promotional fares,, Management Science, 41 (1995), 1371.  doi: 10.1287/mnsc.41.8.1371.  Google Scholar

[9]

Y. Feng and B. Xiao, Maximizing revenue of perishable assets with risk analysis,, Operations Research, 47 (1999), 337.  doi: 10.1287/opre.47.2.337.  Google Scholar

[10]

Y. Feng and B. Xiao, Optimal policies of yield management with multiple predetermined prices,, Operations Research, 48 (2000), 332.  doi: 10.1287/opre.48.2.332.13373.  Google Scholar

[11]

Y. Feng and B. Xiao, A dynamic airline seat inventory control model and its optimal policy,, Operations Research, 49 (2001), 938.  doi: 10.1287/opre.49.6.938.10026.  Google Scholar

[12]

Y. Feng and B. Xiao, A continuous-time seat control model for single-leg flights with no-shows and optimal overbooking upper bound,, European Journal of Operational Research, 174 (2006), 1298.  doi: 10.1016/j.ejor.2005.05.008.  Google Scholar

[13]

Y. Feng, P. Lin and B. Xiao, An analysis of airline seat control with cancellations, in "Stochastic Modelling and Optimization, with Applications in Queues, Finances, and Supply Chains" (eds. D. D. Yao, H. Zhang and X. Y. Zhou),, Springer-Verlag, (2002).   Google Scholar

[14]

W. H. Fleming and H. M. Soner, "Controlled Markov Process and Viscosity Solutions,", Second edition, 25 (2006).   Google Scholar

[15]

M. k. Geraghty and E. Johnson, Revenue management saves national car rental,, Inerfaces, 27 (1997), 107.  doi: 10.1287/inte.27.1.107.  Google Scholar

[16]

Y. Ge, Z. Yin and Y. Xu, Overbooking with transference option for flights,, Journal of Industrial and Management Optimization, 7 (2011), 449.  doi: 10.3934/jimo.2011.7.449.  Google Scholar

[17]

S. P. Ladany and A. Arbel, Optimal cruise-liner passenger cabin pricing policy,, European Journal of Operational Research, 55 (1991), 136.  doi: 10.1016/0377-2217(91)90219-L.  Google Scholar

[18]

C. J. Lautenbacher, The underlying Markov decision process in the single-leg airline yield management problem,, Transportation Science, 34 (1999), 136.  doi: 10.1287/trsc.33.2.136.  Google Scholar

[19]

T. C. Lee and M. Hersh, A model for dynamic airline seat inventory control with multiple seat bookings,, Transportation Science, 27 (1993), 252.  doi: 10.1287/trsc.27.3.252.  Google Scholar

[20]

Y. Liang, Solution to the continuous time dynamic yield management model,, Transportation Science, 33 (1999), 117.  doi: 10.1287/trsc.33.1.117.  Google Scholar

[21]

K. Littlewood, Forecasting and control of passenger bookings,, 12th AGIFORS Symposium Proceedings, (1972), 103.   Google Scholar

[22]

K. T. Talluri and G. J. Van Ryzin, "The Theory and Practice of Revenue Management,", International Series in Operations Research & Management Science, 68 (2004).   Google Scholar

[1]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[2]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[5]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[6]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]