April  2012, 8(2): 379-389. doi: 10.3934/jimo.2012.8.379

A real option approach to optimal inventory management of retail products

1. 

College of Management, Georgia Institute of Technology, 800 West Peachtree Street NW Atlanta, Georgia 30308-0520

2. 

Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

3. 

Department of Applied Finance and Actuarial Studies and the Centre for Financial Risk, Faculty of Business and Economics, Macquarie University, Sydney, NSW 2109, Australia

4. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  March 2011 Revised  October 2011 Published  April 2012

This paper introduces a novel approach to discuss an optimal inventory level of a retail product using a real option framework. We consider stochastic models for the evolution of the demand and unit price of the product over time. The profit structure of the retailer is represented by the payoff of the real option. An actuarial approach is then used to price the option. The retailer determines an optimal inventory level of the product with a view to maximizing the net expected profit. Numerical examples will be given to illustrate the practical implementation of the proposed approach and to investigate the impacts of changes in parameters on the optimal inventory level of the product.
Citation: Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial & Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379
References:
[1]

P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach,, Journal of Financial and Quantitative Analysis, 33 (1998), 305.  doi: 10.2307/2331098.  Google Scholar

[2]

W. Ching, Markov-modulated Poisson processes for multi-location inventory problems,, International Journal of Production Economics, 53 (1997), 217.  doi: 10.1016/S0925-5273(97)00114-X.  Google Scholar

[3]

W. Ching, An inventory model for manufacturing systems with delivery time guarantees,, Computers and Operations Research, 25 (1998), 367.  doi: 10.1016/S0305-0548(97)00077-4.  Google Scholar

[4]

W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy,, J. Ind. Manag. Optim., 5 (2009), 103.   Google Scholar

[5]

T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies,", 3rd edition, (2000).   Google Scholar

[6]

M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options,, Mathematical Finance, 14 (2004), 445.  doi: 10.1111/j.0960-1627.2004.00199.x.  Google Scholar

[7]

A. Damodaran, "Damodaran on Valuation,", Wiley, (1994).   Google Scholar

[8]

A. Dixit and R. Pindyck, "Investment Under Uncertainty,", Princeton University Press, (1994).   Google Scholar

[9]

R. M. Feldman, A continuous review (s, S) inventory system in a random environment,, Journal of Applied Probability, 15 (1978), 654.  doi: 10.2307/3213131.  Google Scholar

[10]

S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments,, Journal of Operations Management, 18 (1999), 61.  doi: 10.1016/S0272-6963(99)00012-1.  Google Scholar

[11]

V. Henderson, Valuing the option to invest in an incomplete market,, Mathematics and Financial Economics, 1 (2007), 103.  doi: 10.1007/s11579-007-0005-z.  Google Scholar

[12]

A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D,, Management Science, 47 (2001), 85.  doi: 10.1287/mnsc.47.1.85.10661.  Google Scholar

[13]

D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company,, Financial Analysts Journal, 56 (2000), 76.  doi: 10.2469/faj.v56.n3.2362.  Google Scholar

[14]

H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain,, Management Science, 46 (2000), 626.  doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[15]

W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions,, Management Science, 36 (1990), 724.  doi: 10.1287/mnsc.36.6.724.  Google Scholar

[16]

E. Schwartz and M. Moon, Rational pricing of internet companies,, Financial Analysts Journal, 56 (2000), 62.  doi: 10.2469/faj.v56.n3.2361.  Google Scholar

[17]

M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence,, Management Science, 46 (2000), 404.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[18]

Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform,, J. Ind. Manag. Optim., 2 (2006), 177.  doi: 10.3934/jimo.2006.2.177.  Google Scholar

[19]

C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk,, Mathematical Methods of Operations Research, 68 (2008), 97.  doi: 10.1007/s00186-007-0190-9.  Google Scholar

[20]

X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium,, J. Ind. Manag. Optim., 4 (2008), 843.  doi: 10.3934/jimo.2008.4.843.  Google Scholar

[21]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains,, J. Ind. Manag. Optim., 4 (2008), 81.   Google Scholar

show all references

References:
[1]

P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach,, Journal of Financial and Quantitative Analysis, 33 (1998), 305.  doi: 10.2307/2331098.  Google Scholar

[2]

W. Ching, Markov-modulated Poisson processes for multi-location inventory problems,, International Journal of Production Economics, 53 (1997), 217.  doi: 10.1016/S0925-5273(97)00114-X.  Google Scholar

[3]

W. Ching, An inventory model for manufacturing systems with delivery time guarantees,, Computers and Operations Research, 25 (1998), 367.  doi: 10.1016/S0305-0548(97)00077-4.  Google Scholar

[4]

W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy,, J. Ind. Manag. Optim., 5 (2009), 103.   Google Scholar

[5]

T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies,", 3rd edition, (2000).   Google Scholar

[6]

M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options,, Mathematical Finance, 14 (2004), 445.  doi: 10.1111/j.0960-1627.2004.00199.x.  Google Scholar

[7]

A. Damodaran, "Damodaran on Valuation,", Wiley, (1994).   Google Scholar

[8]

A. Dixit and R. Pindyck, "Investment Under Uncertainty,", Princeton University Press, (1994).   Google Scholar

[9]

R. M. Feldman, A continuous review (s, S) inventory system in a random environment,, Journal of Applied Probability, 15 (1978), 654.  doi: 10.2307/3213131.  Google Scholar

[10]

S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments,, Journal of Operations Management, 18 (1999), 61.  doi: 10.1016/S0272-6963(99)00012-1.  Google Scholar

[11]

V. Henderson, Valuing the option to invest in an incomplete market,, Mathematics and Financial Economics, 1 (2007), 103.  doi: 10.1007/s11579-007-0005-z.  Google Scholar

[12]

A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D,, Management Science, 47 (2001), 85.  doi: 10.1287/mnsc.47.1.85.10661.  Google Scholar

[13]

D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company,, Financial Analysts Journal, 56 (2000), 76.  doi: 10.2469/faj.v56.n3.2362.  Google Scholar

[14]

H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain,, Management Science, 46 (2000), 626.  doi: 10.1287/mnsc.46.5.626.12047.  Google Scholar

[15]

W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions,, Management Science, 36 (1990), 724.  doi: 10.1287/mnsc.36.6.724.  Google Scholar

[16]

E. Schwartz and M. Moon, Rational pricing of internet companies,, Financial Analysts Journal, 56 (2000), 62.  doi: 10.2469/faj.v56.n3.2361.  Google Scholar

[17]

M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence,, Management Science, 46 (2000), 404.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[18]

Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform,, J. Ind. Manag. Optim., 2 (2006), 177.  doi: 10.3934/jimo.2006.2.177.  Google Scholar

[19]

C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk,, Mathematical Methods of Operations Research, 68 (2008), 97.  doi: 10.1007/s00186-007-0190-9.  Google Scholar

[20]

X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium,, J. Ind. Manag. Optim., 4 (2008), 843.  doi: 10.3934/jimo.2008.4.843.  Google Scholar

[21]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains,, J. Ind. Manag. Optim., 4 (2008), 81.   Google Scholar

[1]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[2]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[3]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[4]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[5]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[8]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[9]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[10]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[11]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[12]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[13]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[14]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (4)

[Back to Top]