\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A real option approach to optimal inventory management of retail products

Abstract Related Papers Cited by
  • This paper introduces a novel approach to discuss an optimal inventory level of a retail product using a real option framework. We consider stochastic models for the evolution of the demand and unit price of the product over time. The profit structure of the retailer is represented by the payoff of the real option. An actuarial approach is then used to price the option. The retailer determines an optimal inventory level of the product with a view to maximizing the net expected profit. Numerical examples will be given to illustrate the practical implementation of the proposed approach and to investigate the impacts of changes in parameters on the optimal inventory level of the product.
    Mathematics Subject Classification: Primary: 90B22; Secondary: 91A06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. D. Childsa, S. H. Ott and A. J. Triantis, Capital budgeting for interrelated projects: A real options approach, Journal of Financial and Quantitative Analysis, 33 (1998), 305-334.doi: 10.2307/2331098.

    [2]

    W. Ching, Markov-modulated Poisson processes for multi-location inventory problems, International Journal of Production Economics, 53 (1997), 217-223.doi: 10.1016/S0925-5273(97)00114-X.

    [3]

    W. Ching, An inventory model for manufacturing systems with delivery time guarantees, Computers and Operations Research, 25 (1998), 367-377.doi: 10.1016/S0305-0548(97)00077-4.

    [4]

    W. Ching, T. Li and S. Choi, A tandem queueing system with applications to pricing strategy, J. Ind. Manag. Optim., 5 (2009), 103-114.

    [5]

    T. Copeland, T. Koller and J. Murrin, "Valuation: Measuring and Managing the Value of Companies," 3rd edition, Wiley, New York, 2000.

    [6]

    M. Dai, H. Y. Wong and Y. K. Kwok, Quanto lookback options, Mathematical Finance, 14 (2004), 445-467.doi: 10.1111/j.0960-1627.2004.00199.x.

    [7]

    A. Damodaran, "Damodaran on Valuation," Wiley, New York, 1994.

    [8]

    A. Dixit and R. Pindyck, "Investment Under Uncertainty," Princeton University Press, Princeton, NJ, 1994.

    [9]

    R. M. Feldman, A continuous review (s, S) inventory system in a random environment, Journal of Applied Probability, 15 (1978), 654-659.doi: 10.2307/3213131.

    [10]

    S. M. Gilbert and R. H. Ballou, Supply chain benefits from advanced customer commitments, Journal of Operations Management, 18 (1999), 61-73.doi: 10.1016/S0272-6963(99)00012-1.

    [11]

    V. Henderson, Valuing the option to invest in an incomplete market, Mathematics and Financial Economics, 1 (2007), 103-128.doi: 10.1007/s11579-007-0005-z.

    [12]

    A. Huchzermeier and C. H. Loch, Project management under risk: Using the real options approach to evaluate flexibility in R&D, Management Science, 47 (2001), 85-101.doi: 10.1287/mnsc.47.1.85.10661.

    [13]

    D. Kellogg and J. Charnes, Real-options valuation for a biotechnology company, Financial Analysts Journal, 56 (2000), 76-84.doi: 10.2469/faj.v56.n3.2362.

    [14]

    H. L. Lee, K. C. So and C. S. Tang, The value of information sharing in a two-level supply chain, Management Science, 46 (2000), 626-643doi: 10.1287/mnsc.46.5.626.12047.

    [15]

    W. S. Lovejoy, Myopic policies for some inventory models with uncertain demand distributions, Management Science, 36 (1990), 724-738.doi: 10.1287/mnsc.36.6.724.

    [16]

    E. Schwartz and M. Moon, Rational pricing of internet companies, Financial Analysts Journal, 56 (2000), 62-75.doi: 10.2469/faj.v56.n3.2361.

    [17]

    M. E. Schweitzer and G. P. Cachon, Decision bias in The newsvendor problems with a known demand distribution: Experimental evidence, Management Science, 46 (2000), 404-420.doi: 10.1287/mnsc.46.3.404.12070.

    [18]

    Tak Kuen Siu, Howell Tong and Hailiang Yang, Option pricing under threshold autoregressive models by threshold Esscher transform, J. Ind. Manag. Optim., 2 (2006), 177-197.doi: 10.3934/jimo.2006.2.177.

    [19]

    C.-O. Ewald and Z. Yang, Utility based pricing and exercising of real options under geometric mean reversion and risk aversion toward idiosyncratic risk, Mathematical Methods of Operations Research, 68 (2008), 97-123.doi: 10.1007/s00186-007-0190-9.

    [20]

    X. Xu and X. Cai, Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium, J. Ind. Manag. Optim., 4 (2008), 843-859.doi: 10.3934/jimo.2008.4.843.

    [21]

    K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains, J. Ind. Manag. Optim., 4 (2008), 81-94.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return