-
Previous Article
Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications
- JIMO Home
- This Issue
-
Next Article
A real option approach to optimal inventory management of retail products
The dependence of assets and default threshold with thinning-dependence structure
1. | Department of Mathematics and Center for Financial Engineering, Soochow University, Suzhou 215006, China, China |
References:
[1] |
T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).
|
[2] |
F. Black and J. Cox, Valuing corporate securities liabilities: Some effects of bond indenture provisions,, J. Finan., 31 (1976), 351.
doi: 10.2307/2326607. |
[3] |
F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Polit. Econ., 81 (1973), 637.
doi: 10.1086/260062. |
[4] |
N. Cai, On first passage times of a hyper-exponential jump diffusion process,, Oper. Res. Lett., 37 (2009), 127.
doi: 10.1016/j.orl.2009.01.002. |
[5] |
N. Chen and S. G. Kou, Credit spreads, optiomal capital structure, and implied volatility with endogenous defaults and jump risk,, Math. Financ., 19 (2009), 343.
doi: 10.1111/j.1467-9965.2009.00375.x. |
[6] |
Y. C. Chi, Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance,, Insurance Math. Econom., 46 (2010), 385.
doi: 10.1016/j.insmatheco.2009.12.004. |
[7] |
P. Collin-Dufresne and R. S. Goldstein, Do credit spreads reflect stationary leverage ratios?,, J. Finan., 56 (2001), 1929.
doi: 10.1111/0022-1082.00395. |
[8] |
D. Duffie and K. Singleton, Modeling term structure of defaultable bond,, Rev. Financ. Stud., 12 (1999), 687.
doi: 10.1093/rfs/12.4.687. |
[9] |
D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information,, Econometrica, 69 (2001), 633.
doi: 10.1111/1468-0262.00208. |
[10] |
F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion,, Insurance Math. Econom., 10 (1991), 51.
doi: 10.1016/0167-6687(91)90023-Q. |
[11] |
H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option,, Insurance Math. Econom., 22 (1998), 263.
doi: 10.1016/S0167-6687(98)00014-6. |
[12] |
H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, N. Amer. Actuarial J., 2 (1998), 48.
|
[13] |
K. Giesecke and L. Goldberg, Forecasting default in the face of uncertainty,, J. Derivatives, 12 (2004), 14.
doi: 10.3905/jod.2004.434534. |
[14] |
R. Goldstein, N. Ju and H. Leland, An EBIT-based model of dynamic capital structure,, J. Bus., 74 (2001), 483.
doi: 10.1086/322893. |
[15] |
B. Hilberink and L. C. G. Rogers, Optimal capital structure and endogenous default,, Financ. Stoch, 6 (2002), 237.
doi: 10.1007/s007800100058. |
[16] |
J. Z. Huang and M. Huang, How much of the corporate-treasury yield spread is due to credit risk?: A new calibration approach,, in, (2003). Google Scholar |
[17] |
J. Z. Huang and H. Zhou, Specification analysis of structual credit risk models,, in, (2008). Google Scholar |
[18] |
R. Jarrow and S. Turnbull, Pricing derivatives on financial securities subject to default risk,, J. Finan., 50 (1995), 53.
doi: 10.2307/2329239. |
[19] |
N. Ju and H. Ou-Yang, Capital structure, debt maturity, and stochastic interest rates,, J. Bus., 79 (2006), 2469.
doi: 10.1086/505241. |
[20] |
S. G. Kou, A jump-diffusion model for option pricing,, Manag. Sci., 48 (2002), 1086.
doi: 10.1287/mnsc.48.8.1086.166. |
[21] |
S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model,, Manag. Sci., 50 (2004), 1178. Google Scholar |
[22] |
S. G. Kou and H. Wang, First passage times of a jump diffusion process,, Adv. App. Probab., 35 (2003), 504.
|
[23] |
D. Lando, "Credit Risk Modeling: Theory and Applications,", Princeton Series in Finance, (2004). Google Scholar |
[24] |
H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure,, J. Finan., 49 (1994), 1213.
doi: 10.2307/2329184. |
[25] |
H. Leland and K. B. Toft, Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads,, J. Finan., 51 (1996), 987.
doi: 10.2307/2329229. |
[26] |
F. Longstaff and E. Schwartz, Valuing risky debt: A new approach,, J. Finan., 50 (1995), 789.
doi: 10.2307/2329288. |
[27] |
D. B. Madan and H. Unal, Pricing the risks of default,, Rev. Deriv. Res., 2 (1998), 121.
doi: 10.1007/BF01531333. |
[28] |
R. C. Merton, On the pricing of corporate debt: The risky structure of interest rates,, J. Finan., 29 (1974), 449.
doi: 10.2307/2978814. |
[29] |
C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process,, Ann. Finan., 3 (2007), 487.
doi: 10.1007/s10436-006-0062-y. |
[30] |
S. M. Ross, "Stochastic Processes," Second edition,, Wiley Series in Probability and Statistics: Probability and Statistics, (1996).
|
[31] |
J. Ruf, "Structural Default Models with Jumps,", Ph.D thesis, (2006). Google Scholar |
[32] |
T. Schmidt and A. Novikov, A structural model with unobserved default boundary,, Appl. Math. Finan., 15 (2008), 183.
doi: 10.1080/13504860701718281. |
[33] |
G. J. Wang and K. C. Yuen, On a correlated aggregate claims model with thinning-dependence structure,, Insurance Math. Econom., 36 (2005), 456.
doi: 10.1016/j.insmatheco.2005.04.004. |
[34] |
Z. M. Zhang, H. Yang and S. M. Li, The perturbed compound Poisson risk model with two-sided jumps,, J. Comput. Appl. Math., 233 (2010), 1773.
doi: 10.1016/j.cam.2009.09.014. |
[35] |
C. S. Zhou, The term structure of credit spreads with jump risk,, J. Bank. Finan., 25 (2001), 2015.
doi: 10.1016/S0378-4266(00)00168-0. |
show all references
References:
[1] |
T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).
|
[2] |
F. Black and J. Cox, Valuing corporate securities liabilities: Some effects of bond indenture provisions,, J. Finan., 31 (1976), 351.
doi: 10.2307/2326607. |
[3] |
F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Polit. Econ., 81 (1973), 637.
doi: 10.1086/260062. |
[4] |
N. Cai, On first passage times of a hyper-exponential jump diffusion process,, Oper. Res. Lett., 37 (2009), 127.
doi: 10.1016/j.orl.2009.01.002. |
[5] |
N. Chen and S. G. Kou, Credit spreads, optiomal capital structure, and implied volatility with endogenous defaults and jump risk,, Math. Financ., 19 (2009), 343.
doi: 10.1111/j.1467-9965.2009.00375.x. |
[6] |
Y. C. Chi, Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance,, Insurance Math. Econom., 46 (2010), 385.
doi: 10.1016/j.insmatheco.2009.12.004. |
[7] |
P. Collin-Dufresne and R. S. Goldstein, Do credit spreads reflect stationary leverage ratios?,, J. Finan., 56 (2001), 1929.
doi: 10.1111/0022-1082.00395. |
[8] |
D. Duffie and K. Singleton, Modeling term structure of defaultable bond,, Rev. Financ. Stud., 12 (1999), 687.
doi: 10.1093/rfs/12.4.687. |
[9] |
D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information,, Econometrica, 69 (2001), 633.
doi: 10.1111/1468-0262.00208. |
[10] |
F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion,, Insurance Math. Econom., 10 (1991), 51.
doi: 10.1016/0167-6687(91)90023-Q. |
[11] |
H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option,, Insurance Math. Econom., 22 (1998), 263.
doi: 10.1016/S0167-6687(98)00014-6. |
[12] |
H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, N. Amer. Actuarial J., 2 (1998), 48.
|
[13] |
K. Giesecke and L. Goldberg, Forecasting default in the face of uncertainty,, J. Derivatives, 12 (2004), 14.
doi: 10.3905/jod.2004.434534. |
[14] |
R. Goldstein, N. Ju and H. Leland, An EBIT-based model of dynamic capital structure,, J. Bus., 74 (2001), 483.
doi: 10.1086/322893. |
[15] |
B. Hilberink and L. C. G. Rogers, Optimal capital structure and endogenous default,, Financ. Stoch, 6 (2002), 237.
doi: 10.1007/s007800100058. |
[16] |
J. Z. Huang and M. Huang, How much of the corporate-treasury yield spread is due to credit risk?: A new calibration approach,, in, (2003). Google Scholar |
[17] |
J. Z. Huang and H. Zhou, Specification analysis of structual credit risk models,, in, (2008). Google Scholar |
[18] |
R. Jarrow and S. Turnbull, Pricing derivatives on financial securities subject to default risk,, J. Finan., 50 (1995), 53.
doi: 10.2307/2329239. |
[19] |
N. Ju and H. Ou-Yang, Capital structure, debt maturity, and stochastic interest rates,, J. Bus., 79 (2006), 2469.
doi: 10.1086/505241. |
[20] |
S. G. Kou, A jump-diffusion model for option pricing,, Manag. Sci., 48 (2002), 1086.
doi: 10.1287/mnsc.48.8.1086.166. |
[21] |
S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model,, Manag. Sci., 50 (2004), 1178. Google Scholar |
[22] |
S. G. Kou and H. Wang, First passage times of a jump diffusion process,, Adv. App. Probab., 35 (2003), 504.
|
[23] |
D. Lando, "Credit Risk Modeling: Theory and Applications,", Princeton Series in Finance, (2004). Google Scholar |
[24] |
H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure,, J. Finan., 49 (1994), 1213.
doi: 10.2307/2329184. |
[25] |
H. Leland and K. B. Toft, Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads,, J. Finan., 51 (1996), 987.
doi: 10.2307/2329229. |
[26] |
F. Longstaff and E. Schwartz, Valuing risky debt: A new approach,, J. Finan., 50 (1995), 789.
doi: 10.2307/2329288. |
[27] |
D. B. Madan and H. Unal, Pricing the risks of default,, Rev. Deriv. Res., 2 (1998), 121.
doi: 10.1007/BF01531333. |
[28] |
R. C. Merton, On the pricing of corporate debt: The risky structure of interest rates,, J. Finan., 29 (1974), 449.
doi: 10.2307/2978814. |
[29] |
C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process,, Ann. Finan., 3 (2007), 487.
doi: 10.1007/s10436-006-0062-y. |
[30] |
S. M. Ross, "Stochastic Processes," Second edition,, Wiley Series in Probability and Statistics: Probability and Statistics, (1996).
|
[31] |
J. Ruf, "Structural Default Models with Jumps,", Ph.D thesis, (2006). Google Scholar |
[32] |
T. Schmidt and A. Novikov, A structural model with unobserved default boundary,, Appl. Math. Finan., 15 (2008), 183.
doi: 10.1080/13504860701718281. |
[33] |
G. J. Wang and K. C. Yuen, On a correlated aggregate claims model with thinning-dependence structure,, Insurance Math. Econom., 36 (2005), 456.
doi: 10.1016/j.insmatheco.2005.04.004. |
[34] |
Z. M. Zhang, H. Yang and S. M. Li, The perturbed compound Poisson risk model with two-sided jumps,, J. Comput. Appl. Math., 233 (2010), 1773.
doi: 10.1016/j.cam.2009.09.014. |
[35] |
C. S. Zhou, The term structure of credit spreads with jump risk,, J. Bank. Finan., 25 (2001), 2015.
doi: 10.1016/S0378-4266(00)00168-0. |
[1] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021039 |
[2] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[3] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[4] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[5] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[6] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[7] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[8] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[9] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[10] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[11] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[12] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[13] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[14] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[15] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[16] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[17] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[18] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[19] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[20] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]