April  2012, 8(2): 391-410. doi: 10.3934/jimo.2012.8.391

The dependence of assets and default threshold with thinning-dependence structure

1. 

Department of Mathematics and Center for Financial Engineering, Soochow University, Suzhou 215006, China, China

Received  October 2010 Revised  October 2011 Published  April 2012

In this paper, we model the value of a firm and a default threshold using two dependent jump-diffusion processes. We give the explicit solutions for the Laplace transform of the first passage time and the expected discounted ratio of the firm value to the default threshold at default, and show the impact of dependent jumps of the firm value and the default threshold on the default probabilities and the spreads of corporate defaultable bonds.
Citation: Yinghui Dong, Guojing Wang. The dependence of assets and default threshold with thinning-dependence structure. Journal of Industrial & Management Optimization, 2012, 8 (2) : 391-410. doi: 10.3934/jimo.2012.8.391
References:
[1]

T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).   Google Scholar

[2]

F. Black and J. Cox, Valuing corporate securities liabilities: Some effects of bond indenture provisions,, J. Finan., 31 (1976), 351.  doi: 10.2307/2326607.  Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Polit. Econ., 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[4]

N. Cai, On first passage times of a hyper-exponential jump diffusion process,, Oper. Res. Lett., 37 (2009), 127.  doi: 10.1016/j.orl.2009.01.002.  Google Scholar

[5]

N. Chen and S. G. Kou, Credit spreads, optiomal capital structure, and implied volatility with endogenous defaults and jump risk,, Math. Financ., 19 (2009), 343.  doi: 10.1111/j.1467-9965.2009.00375.x.  Google Scholar

[6]

Y. C. Chi, Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance,, Insurance Math. Econom., 46 (2010), 385.  doi: 10.1016/j.insmatheco.2009.12.004.  Google Scholar

[7]

P. Collin-Dufresne and R. S. Goldstein, Do credit spreads reflect stationary leverage ratios?,, J. Finan., 56 (2001), 1929.  doi: 10.1111/0022-1082.00395.  Google Scholar

[8]

D. Duffie and K. Singleton, Modeling term structure of defaultable bond,, Rev. Financ. Stud., 12 (1999), 687.  doi: 10.1093/rfs/12.4.687.  Google Scholar

[9]

D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information,, Econometrica, 69 (2001), 633.  doi: 10.1111/1468-0262.00208.  Google Scholar

[10]

F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion,, Insurance Math. Econom., 10 (1991), 51.  doi: 10.1016/0167-6687(91)90023-Q.  Google Scholar

[11]

H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option,, Insurance Math. Econom., 22 (1998), 263.  doi: 10.1016/S0167-6687(98)00014-6.  Google Scholar

[12]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, N. Amer. Actuarial J., 2 (1998), 48.   Google Scholar

[13]

K. Giesecke and L. Goldberg, Forecasting default in the face of uncertainty,, J. Derivatives, 12 (2004), 14.  doi: 10.3905/jod.2004.434534.  Google Scholar

[14]

R. Goldstein, N. Ju and H. Leland, An EBIT-based model of dynamic capital structure,, J. Bus., 74 (2001), 483.  doi: 10.1086/322893.  Google Scholar

[15]

B. Hilberink and L. C. G. Rogers, Optimal capital structure and endogenous default,, Financ. Stoch, 6 (2002), 237.  doi: 10.1007/s007800100058.  Google Scholar

[16]

J. Z. Huang and M. Huang, How much of the corporate-treasury yield spread is due to credit risk?: A new calibration approach,, in, (2003).   Google Scholar

[17]

J. Z. Huang and H. Zhou, Specification analysis of structual credit risk models,, in, (2008).   Google Scholar

[18]

R. Jarrow and S. Turnbull, Pricing derivatives on financial securities subject to default risk,, J. Finan., 50 (1995), 53.  doi: 10.2307/2329239.  Google Scholar

[19]

N. Ju and H. Ou-Yang, Capital structure, debt maturity, and stochastic interest rates,, J. Bus., 79 (2006), 2469.  doi: 10.1086/505241.  Google Scholar

[20]

S. G. Kou, A jump-diffusion model for option pricing,, Manag. Sci., 48 (2002), 1086.  doi: 10.1287/mnsc.48.8.1086.166.  Google Scholar

[21]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model,, Manag. Sci., 50 (2004), 1178.   Google Scholar

[22]

S. G. Kou and H. Wang, First passage times of a jump diffusion process,, Adv. App. Probab., 35 (2003), 504.   Google Scholar

[23]

D. Lando, "Credit Risk Modeling: Theory and Applications,", Princeton Series in Finance, (2004).   Google Scholar

[24]

H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure,, J. Finan., 49 (1994), 1213.  doi: 10.2307/2329184.  Google Scholar

[25]

H. Leland and K. B. Toft, Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads,, J. Finan., 51 (1996), 987.  doi: 10.2307/2329229.  Google Scholar

[26]

F. Longstaff and E. Schwartz, Valuing risky debt: A new approach,, J. Finan., 50 (1995), 789.  doi: 10.2307/2329288.  Google Scholar

[27]

D. B. Madan and H. Unal, Pricing the risks of default,, Rev. Deriv. Res., 2 (1998), 121.  doi: 10.1007/BF01531333.  Google Scholar

[28]

R. C. Merton, On the pricing of corporate debt: The risky structure of interest rates,, J. Finan., 29 (1974), 449.  doi: 10.2307/2978814.  Google Scholar

[29]

C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process,, Ann. Finan., 3 (2007), 487.  doi: 10.1007/s10436-006-0062-y.  Google Scholar

[30]

S. M. Ross, "Stochastic Processes," Second edition,, Wiley Series in Probability and Statistics: Probability and Statistics, (1996).   Google Scholar

[31]

J. Ruf, "Structural Default Models with Jumps,", Ph.D thesis, (2006).   Google Scholar

[32]

T. Schmidt and A. Novikov, A structural model with unobserved default boundary,, Appl. Math. Finan., 15 (2008), 183.  doi: 10.1080/13504860701718281.  Google Scholar

[33]

G. J. Wang and K. C. Yuen, On a correlated aggregate claims model with thinning-dependence structure,, Insurance Math. Econom., 36 (2005), 456.  doi: 10.1016/j.insmatheco.2005.04.004.  Google Scholar

[34]

Z. M. Zhang, H. Yang and S. M. Li, The perturbed compound Poisson risk model with two-sided jumps,, J. Comput. Appl. Math., 233 (2010), 1773.  doi: 10.1016/j.cam.2009.09.014.  Google Scholar

[35]

C. S. Zhou, The term structure of credit spreads with jump risk,, J. Bank. Finan., 25 (2001), 2015.  doi: 10.1016/S0378-4266(00)00168-0.  Google Scholar

show all references

References:
[1]

T. Bielecki and M. Rutkowski, "Credit Risk: Modeling, Valuation and Hedging,", Springer Finance, (2002).   Google Scholar

[2]

F. Black and J. Cox, Valuing corporate securities liabilities: Some effects of bond indenture provisions,, J. Finan., 31 (1976), 351.  doi: 10.2307/2326607.  Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, J. Polit. Econ., 81 (1973), 637.  doi: 10.1086/260062.  Google Scholar

[4]

N. Cai, On first passage times of a hyper-exponential jump diffusion process,, Oper. Res. Lett., 37 (2009), 127.  doi: 10.1016/j.orl.2009.01.002.  Google Scholar

[5]

N. Chen and S. G. Kou, Credit spreads, optiomal capital structure, and implied volatility with endogenous defaults and jump risk,, Math. Financ., 19 (2009), 343.  doi: 10.1111/j.1467-9965.2009.00375.x.  Google Scholar

[6]

Y. C. Chi, Analysis of expected discounted penalty function for a general jump-diffusion risk model and applications in finance,, Insurance Math. Econom., 46 (2010), 385.  doi: 10.1016/j.insmatheco.2009.12.004.  Google Scholar

[7]

P. Collin-Dufresne and R. S. Goldstein, Do credit spreads reflect stationary leverage ratios?,, J. Finan., 56 (2001), 1929.  doi: 10.1111/0022-1082.00395.  Google Scholar

[8]

D. Duffie and K. Singleton, Modeling term structure of defaultable bond,, Rev. Financ. Stud., 12 (1999), 687.  doi: 10.1093/rfs/12.4.687.  Google Scholar

[9]

D. Duffie and D. Lando, Term structures of credit spreads with incomplete accounting information,, Econometrica, 69 (2001), 633.  doi: 10.1111/1468-0262.00208.  Google Scholar

[10]

F. Dufresne and H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion,, Insurance Math. Econom., 10 (1991), 51.  doi: 10.1016/0167-6687(91)90023-Q.  Google Scholar

[11]

H. U. Gerber and B. Landry, On the discounted penalty at ruin in a jump-diffusion and the perpetual put option,, Insurance Math. Econom., 22 (1998), 263.  doi: 10.1016/S0167-6687(98)00014-6.  Google Scholar

[12]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, N. Amer. Actuarial J., 2 (1998), 48.   Google Scholar

[13]

K. Giesecke and L. Goldberg, Forecasting default in the face of uncertainty,, J. Derivatives, 12 (2004), 14.  doi: 10.3905/jod.2004.434534.  Google Scholar

[14]

R. Goldstein, N. Ju and H. Leland, An EBIT-based model of dynamic capital structure,, J. Bus., 74 (2001), 483.  doi: 10.1086/322893.  Google Scholar

[15]

B. Hilberink and L. C. G. Rogers, Optimal capital structure and endogenous default,, Financ. Stoch, 6 (2002), 237.  doi: 10.1007/s007800100058.  Google Scholar

[16]

J. Z. Huang and M. Huang, How much of the corporate-treasury yield spread is due to credit risk?: A new calibration approach,, in, (2003).   Google Scholar

[17]

J. Z. Huang and H. Zhou, Specification analysis of structual credit risk models,, in, (2008).   Google Scholar

[18]

R. Jarrow and S. Turnbull, Pricing derivatives on financial securities subject to default risk,, J. Finan., 50 (1995), 53.  doi: 10.2307/2329239.  Google Scholar

[19]

N. Ju and H. Ou-Yang, Capital structure, debt maturity, and stochastic interest rates,, J. Bus., 79 (2006), 2469.  doi: 10.1086/505241.  Google Scholar

[20]

S. G. Kou, A jump-diffusion model for option pricing,, Manag. Sci., 48 (2002), 1086.  doi: 10.1287/mnsc.48.8.1086.166.  Google Scholar

[21]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model,, Manag. Sci., 50 (2004), 1178.   Google Scholar

[22]

S. G. Kou and H. Wang, First passage times of a jump diffusion process,, Adv. App. Probab., 35 (2003), 504.   Google Scholar

[23]

D. Lando, "Credit Risk Modeling: Theory and Applications,", Princeton Series in Finance, (2004).   Google Scholar

[24]

H. E. Leland, Corporate debt value, bond covenants, and optimal capital structure,, J. Finan., 49 (1994), 1213.  doi: 10.2307/2329184.  Google Scholar

[25]

H. Leland and K. B. Toft, Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads,, J. Finan., 51 (1996), 987.  doi: 10.2307/2329229.  Google Scholar

[26]

F. Longstaff and E. Schwartz, Valuing risky debt: A new approach,, J. Finan., 50 (1995), 789.  doi: 10.2307/2329288.  Google Scholar

[27]

D. B. Madan and H. Unal, Pricing the risks of default,, Rev. Deriv. Res., 2 (1998), 121.  doi: 10.1007/BF01531333.  Google Scholar

[28]

R. C. Merton, On the pricing of corporate debt: The risky structure of interest rates,, J. Finan., 29 (1974), 449.  doi: 10.2307/2978814.  Google Scholar

[29]

C. A. Ramezani and Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process,, Ann. Finan., 3 (2007), 487.  doi: 10.1007/s10436-006-0062-y.  Google Scholar

[30]

S. M. Ross, "Stochastic Processes," Second edition,, Wiley Series in Probability and Statistics: Probability and Statistics, (1996).   Google Scholar

[31]

J. Ruf, "Structural Default Models with Jumps,", Ph.D thesis, (2006).   Google Scholar

[32]

T. Schmidt and A. Novikov, A structural model with unobserved default boundary,, Appl. Math. Finan., 15 (2008), 183.  doi: 10.1080/13504860701718281.  Google Scholar

[33]

G. J. Wang and K. C. Yuen, On a correlated aggregate claims model with thinning-dependence structure,, Insurance Math. Econom., 36 (2005), 456.  doi: 10.1016/j.insmatheco.2005.04.004.  Google Scholar

[34]

Z. M. Zhang, H. Yang and S. M. Li, The perturbed compound Poisson risk model with two-sided jumps,, J. Comput. Appl. Math., 233 (2010), 1773.  doi: 10.1016/j.cam.2009.09.014.  Google Scholar

[35]

C. S. Zhou, The term structure of credit spreads with jump risk,, J. Bank. Finan., 25 (2001), 2015.  doi: 10.1016/S0378-4266(00)00168-0.  Google Scholar

[1]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[2]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[3]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[4]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[5]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[6]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[9]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[10]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[11]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[12]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[13]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[14]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[15]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[16]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[17]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[18]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[19]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[20]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]