Citation: |
[1] |
J. N. Hooker, R. S. Garfinkel and C. K. Chen, Finite dominating sets for network location problems, Operations Research, 39 (1991), 100-118.doi: 10.1287/opre.39.1.100. |
[2] |
J. Kalcsics, S. Nickel and J. Puerto, Multi-facility ordered median problems: A further analysis, Networks, 41 (2003), 1-12.doi: 10.1002/net.10053. |
[3] |
E. Minieka, The optimal location of a path or tree in a tree network, Networks, 15 (1985), 309-321.doi: 10.1002/net.3230150304. |
[4] |
S. Nickel, and J. Puerto, "Location Theory: A Unified Approach," 1st edition, Springer-Verlag, Berlin, 2005. |
[5] |
W. Ogryczak and A. Tamir, Minimizing the sum of $k$ largest functions in linear time, Information Processing Letters, 85 (2003), 117-122.doi: 10.1016/S0020-0190(02)00370-8. |
[6] |
J. Puerto, and A. Tamir, Locating tree-shaped facilities using the ordered median objective, Mathematical Programming, 102 (2005), 313-338.doi: 10.1007/s10107-004-0547-2. |
[7] |
A. Tamir, J. Puerto and D. Pérez-Brito, The centdian subtree on tree networks, Discrete Applied Mathematics, 18 (2002), 263-278.doi: 10.1016/S0166-218X(01)00199-8. |
[8] |
H. J. Tang, T. C. E. Cheng and C. T. Ng, Finite dominating sets for the multi-facility ordered median problem in networks and algorithmic applications, Computers & Industrial Engineering, 57 (2009), 707-712.doi: 10.1016/j.cie.2009.01.015. |
[9] |
H. J. Tang, T. C. E. Cheng and C. T. Ng, Multi-facility ordered median problems in directed networks, Journal of Systems Science and Complexity, 24 (2011), 61-67.doi: 10.1007/s11424-011-9327-2. |
[10] |
P. M. Vaidya, An algorithm for linear programming which requires $O((m+n)n^2+(m+n)^{1.5}nL)$ arithmetic operations, Mathematical Programming, 47 (1990), 175-201.doi: 10.1007/BF01580859. |
[11] |
B.-F. Wang, Efficient parallel algorithms for optimally locating a path and a tree of a specified length in a weighted tree network, Journal of Algorithms, 34 (2000), 90-108.doi: 10.1006/jagm.1999.1020. |