• Previous Article
    A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search
  • JIMO Home
  • This Issue
  • Next Article
    An efficient convexification method for solving generalized geometric problems
April  2012, 8(2): 457-468. doi: 10.3934/jimo.2012.8.457

A new heuristic algorithm for laser antimissile strategy optimization

1. 

School of Mathematical Science, Heilongjiang University, Harbin, 150080, China

2. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin, 150001, China

Received  March 2011 Revised  November 2011 Published  April 2012

This paper presents a new heuristic algorithm for solving a class of dynamic laser antimissile problems. The main virtue of this algorithm is that it can find a satisfactory local optimal solution within allowable short time duration which is the rigid requirement in this application. Two examples are considered and solved to illustrate the effectiveness of algorithm proposed.
Citation: Xiangyu Gao, Yong Sun. A new heuristic algorithm for laser antimissile strategy optimization. Journal of Industrial & Management Optimization, 2012, 8 (2) : 457-468. doi: 10.3934/jimo.2012.8.457
References:
[1]

B. D. Bacher, V. Furnon, P. Shaw, P. Kilby and P. Prosser, Solving vehicle routing problems using constraint programming and metaheuristics,, Journal of Heuristics, 6 (2000), 501.  doi: 10.1023/A:1009621410177.  Google Scholar

[2]

C. G. Cao, "Linear Algebra,'', Inner Mongolia Science and Technology Press, (1999).   Google Scholar

[3]

V. Černý, Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,, Journal of Optimization Theory and Applications, 45 (1985), 41.  doi: 10.1007/BF00940812.  Google Scholar

[4]

C. A. C. Coello and N. C. Cortés, Hybridizing a genetic algorithm with an artificial immune system for global optimization,, Engineering Optimization, 36 (2004), 607.  doi: 10.1080/03052150410001704845.  Google Scholar

[5]

M. Dorigo and L. M. Gambardella, Ant colony system: A cooperative learning approach to the traveling salesman problem,, IEEE Transactions on Evolutionary Computation, 1 (1997), 53.  doi: 10.1109/4235.585892.  Google Scholar

[6]

Z. Ezziane, Applications of artificial intelligence in bioinformatics: A review,, Expert Systems with Applications, 30 (2006), 2.  doi: 10.1016/j.eswa.2005.09.042.  Google Scholar

[7]

J. J. Grefenstette, R. Gopal, B. J. Rosmaita and D. V. Gucht, Genetic algorithms for the traveling salesman problem,, in, (1985), 160.   Google Scholar

[8]

M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning trees,, Operations Research, 18 (1970), 1138.  doi: 10.1287/opre.18.6.1138.  Google Scholar

[9]

B. Jarboui, S. Ibrahim, P. Siarry and A. Rebai, A combinatorial particle swarm optimization for solving permutation flowshop problems,, Computers and Industrial Engineering, 54 (2008), 526.  doi: 10.1016/j.cie.2007.09.006.  Google Scholar

[10]

B. A. Julstrom, Very greedy crossover in a genetic algorithm for the traveling salesman problem,, in, (1995), 324.   Google Scholar

[11]

I. H. Kuo, S. J. Horng, T. W. Kao, T. L. Lin and P. Fan, An efficient flow-shop scheduling algorithm based on a hybrid particle swarm optimization model,, Lecture Notes in Artificial Intelligence, 4570 (2007), 303.   Google Scholar

[12]

S. Lin and B. W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem,, Operations Research, 21 (1973), 498.  doi: 10.1287/opre.21.2.498.  Google Scholar

[13]

H. S. Lope and L. S. Coelho, Particle swarm optimization with fast local search for the blind traveling salesman problem,, Proceedings of the 5th International Conference on Hybrid Intelligent Systems, (2005), 245.   Google Scholar

[14]

T. A. J. Nicholson, "Optimization in Industry,'', Aldine Transaction, (2007).   Google Scholar

[15]

M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems,, SIAM Review, 33 (1991), 60.  doi: 10.1137/1033004.  Google Scholar

[16]

X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu and Q. X. Wang, Particle swarm optimization-based algorithms for TSP and generalized TSP,, Information Processing Letters, 103 (2007), 169.  doi: 10.1016/j.ipl.2007.03.010.  Google Scholar

[17]

M. F. Tasgetiren, Y. C. Liang, M. Sevkli and G. Gencyilmaz, A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem,, European Journal of Operational Research, 177 (2007), 1930.  doi: 10.1016/j.ejor.2005.12.024.  Google Scholar

[18]

C. H. Yang and K. E. Nygard, The effects of initial population in genetic search for time constrained traveling salesman problems,, in, (1993), 378.   Google Scholar

[19]

A. R. Yildiz, A novel hybrid immune algorithm for global optimization in design and manufacturing,, Robotics and Computer-Integrated Manufacturing, 25 (2009), 261.  doi: 10.1016/j.rcim.2007.08.002.  Google Scholar

[20]

A. R. Yildiz, A novel particle swarm optimization approach for product design and manufacturing,, International Journal of Advanced Manufacturing Technology, 40 (2009), 617.  doi: 10.1007/s00170-008-1453-1.  Google Scholar

show all references

References:
[1]

B. D. Bacher, V. Furnon, P. Shaw, P. Kilby and P. Prosser, Solving vehicle routing problems using constraint programming and metaheuristics,, Journal of Heuristics, 6 (2000), 501.  doi: 10.1023/A:1009621410177.  Google Scholar

[2]

C. G. Cao, "Linear Algebra,'', Inner Mongolia Science and Technology Press, (1999).   Google Scholar

[3]

V. Černý, Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm,, Journal of Optimization Theory and Applications, 45 (1985), 41.  doi: 10.1007/BF00940812.  Google Scholar

[4]

C. A. C. Coello and N. C. Cortés, Hybridizing a genetic algorithm with an artificial immune system for global optimization,, Engineering Optimization, 36 (2004), 607.  doi: 10.1080/03052150410001704845.  Google Scholar

[5]

M. Dorigo and L. M. Gambardella, Ant colony system: A cooperative learning approach to the traveling salesman problem,, IEEE Transactions on Evolutionary Computation, 1 (1997), 53.  doi: 10.1109/4235.585892.  Google Scholar

[6]

Z. Ezziane, Applications of artificial intelligence in bioinformatics: A review,, Expert Systems with Applications, 30 (2006), 2.  doi: 10.1016/j.eswa.2005.09.042.  Google Scholar

[7]

J. J. Grefenstette, R. Gopal, B. J. Rosmaita and D. V. Gucht, Genetic algorithms for the traveling salesman problem,, in, (1985), 160.   Google Scholar

[8]

M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning trees,, Operations Research, 18 (1970), 1138.  doi: 10.1287/opre.18.6.1138.  Google Scholar

[9]

B. Jarboui, S. Ibrahim, P. Siarry and A. Rebai, A combinatorial particle swarm optimization for solving permutation flowshop problems,, Computers and Industrial Engineering, 54 (2008), 526.  doi: 10.1016/j.cie.2007.09.006.  Google Scholar

[10]

B. A. Julstrom, Very greedy crossover in a genetic algorithm for the traveling salesman problem,, in, (1995), 324.   Google Scholar

[11]

I. H. Kuo, S. J. Horng, T. W. Kao, T. L. Lin and P. Fan, An efficient flow-shop scheduling algorithm based on a hybrid particle swarm optimization model,, Lecture Notes in Artificial Intelligence, 4570 (2007), 303.   Google Scholar

[12]

S. Lin and B. W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem,, Operations Research, 21 (1973), 498.  doi: 10.1287/opre.21.2.498.  Google Scholar

[13]

H. S. Lope and L. S. Coelho, Particle swarm optimization with fast local search for the blind traveling salesman problem,, Proceedings of the 5th International Conference on Hybrid Intelligent Systems, (2005), 245.   Google Scholar

[14]

T. A. J. Nicholson, "Optimization in Industry,'', Aldine Transaction, (2007).   Google Scholar

[15]

M. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems,, SIAM Review, 33 (1991), 60.  doi: 10.1137/1033004.  Google Scholar

[16]

X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu and Q. X. Wang, Particle swarm optimization-based algorithms for TSP and generalized TSP,, Information Processing Letters, 103 (2007), 169.  doi: 10.1016/j.ipl.2007.03.010.  Google Scholar

[17]

M. F. Tasgetiren, Y. C. Liang, M. Sevkli and G. Gencyilmaz, A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem,, European Journal of Operational Research, 177 (2007), 1930.  doi: 10.1016/j.ejor.2005.12.024.  Google Scholar

[18]

C. H. Yang and K. E. Nygard, The effects of initial population in genetic search for time constrained traveling salesman problems,, in, (1993), 378.   Google Scholar

[19]

A. R. Yildiz, A novel hybrid immune algorithm for global optimization in design and manufacturing,, Robotics and Computer-Integrated Manufacturing, 25 (2009), 261.  doi: 10.1016/j.rcim.2007.08.002.  Google Scholar

[20]

A. R. Yildiz, A novel particle swarm optimization approach for product design and manufacturing,, International Journal of Advanced Manufacturing Technology, 40 (2009), 617.  doi: 10.1007/s00170-008-1453-1.  Google Scholar

[1]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[2]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[3]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[4]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[5]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[6]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[7]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[8]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[11]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[12]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[13]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[14]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[15]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[16]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[17]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[18]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[19]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[20]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]