-
Previous Article
Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive
- JIMO Home
- This Issue
-
Next Article
A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search
On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem
1. | Department of Mathematics and Statistics, Curtin University of Technology, Kent Street, Bentley 6102, WA, Australia |
2. | Department of Mathematics, Shanghai University, 99, Shangda Road, 200444, Shanghai |
References:
[1] |
C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.
doi: 10.3934/jimo.2010.6.895. |
show all references
References:
[1] |
C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.
doi: 10.3934/jimo.2010.6.895. |
[1] |
Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial and Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705 |
[2] |
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895 |
[3] |
Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397 |
[4] |
Xiaodong Fan, Tian Qin. Stability analysis for generalized semi-infinite optimization problems under functional perturbations. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1221-1233. doi: 10.3934/jimo.2018201 |
[5] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1133-1144. doi: 10.3934/jimo.2021012 |
[6] |
Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006 |
[7] |
Zhi Guo Feng, Kok Lay Teo, Volker Rehbock. A smoothing approach for semi-infinite programming with projected Newton-type algorithm. Journal of Industrial and Management Optimization, 2009, 5 (1) : 141-151. doi: 10.3934/jimo.2009.5.141 |
[8] |
Jinchuan Zhou, Changyu Wang, Naihua Xiu, Soonyi Wu. First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets. Journal of Industrial and Management Optimization, 2009, 5 (4) : 851-866. doi: 10.3934/jimo.2009.5.851 |
[9] |
Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022 |
[10] |
Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial and Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533 |
[11] |
Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial and Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381 |
[12] |
Jinchuan Zhou, Naihua Xiu, Jein-Shan Chen. Solution properties and error bounds for semi-infinite complementarity problems. Journal of Industrial and Management Optimization, 2013, 9 (1) : 99-115. doi: 10.3934/jimo.2013.9.99 |
[13] |
Burcu Özçam, Hao Cheng. A discretization based smoothing method for solving semi-infinite variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 219-233. doi: 10.3934/jimo.2005.1.219 |
[14] |
Zhongwen Chen, Songqiang Qiu, Yujie Jiao. A penalty-free method for equality constrained optimization. Journal of Industrial and Management Optimization, 2013, 9 (2) : 391-409. doi: 10.3934/jimo.2013.9.391 |
[15] |
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353 |
[16] |
Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial and Management Optimization, 2009, 5 (3) : 585-601. doi: 10.3934/jimo.2009.5.585 |
[17] |
Azhar Ali Zafar, Khurram Shabbir, Asim Naseem, Muhammad Waqas Ashraf. MHD natural convection boundary-layer flow over a semi-infinite heated plate with arbitrary inclination. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 1007-1015. doi: 10.3934/dcdss.2020059 |
[18] |
Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems and Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599 |
[19] |
Igor Chueshov. Remark on an elastic plate interacting with a gas in a semi-infinite tube: Periodic solutions. Evolution Equations and Control Theory, 2016, 5 (4) : 561-566. doi: 10.3934/eect.2016019 |
[20] |
Roman Chapko, B. Tomas Johansson. An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions. Inverse Problems and Imaging, 2008, 2 (3) : 317-333. doi: 10.3934/ipi.2008.2.317 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]