April  2012, 8(2): 507-520. doi: 10.3934/jimo.2012.8.507

A Stackelberg game management model of the urban public transport

1. 

School of Mathematical Sciences, Qufu Normal University, Qufu Shandong, 273165, China

2. 

School of Traffic and Transportation, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

3. 

School of Management Science, Qufu Normal University, Rizhao Shandong, 276800

Received  January 2011 Revised  January 2012 Published  April 2012

For the urban public transport management problem, based on analysis of the competition and cooperation relationship among operators on a common network, we establish a generalized Nash equilibrium game first; and then by analyzing the dynamic interaction between manager and operators, we propose a non-cooperative Stackelberg game model in which the manager is the leader and the operators are the followers. To solve the model, we transform it into a variational inequality problem, and the gap function method and the augmented Lagrange algorithm are applied. The given numerical experiments show the efficiency of the proposed model and algorithms.
Citation: Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial & Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507
References:
[1]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Second edition, "Nonlinear Programming: Theory and Algorithms,", Wiley, (1993).   Google Scholar

[2]

A. Bensoussan, Points de Nash dans le cas de fonctionnelles quadratiques et jeux différentials linéaires à $N$ personnes,, SIAM Journal Control, 12 (1974), 460.  doi: 10.1137/0312037.  Google Scholar

[3]

D. P. Bertsekas, "Constrained Optimization and Lagrange Multiplier Methods,", Computer Science and Applied Mathematics, (1982).   Google Scholar

[4]

T. Boulogne, E. Altman, H. Kameda and O. Pourtallier, Mixed equilibrium (ME) for multi-class routing games,, IEEE Transactions on Automatic Control, 47 (2002), 903.  doi: 10.1109/TAC.2002.1008357.  Google Scholar

[5]

W.-K. Ching, S.-M. Choi and M. Huang, Optimal service capacity in a multiple-server queueing system: A game theory approach,, Journal of Industrial and Management Optimization, 6 (2010), 73.   Google Scholar

[6]

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,, Mathematical Programming, 53 (1992), 99.  doi: 10.1007/BF01585696.  Google Scholar

[7]

P. T. Harker, Generalized Nash games and quasi-variational inequalities,, European Journal of Operational Research, 54 (1991), 81.  doi: 10.1016/0377-2217(91)90325-P.  Google Scholar

[8]

P. T. Harker, Multiple equilibrium behaviors on networks,, Transportation Science, 22 (1988), 39.  doi: 10.1287/trsc.22.1.39.  Google Scholar

[9]

B.-S. He, H. Yang and C.-S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities,, European Journal of Operational Research, 159 (2004), 35.  doi: 10.1016/S0377-2217(03)00385-0.  Google Scholar

[10]

D. W. Hearn and M. V. Ramana, Solving congestion toll pricing models,, in, (1998), 109.   Google Scholar

[11]

O. Kofi and I. Ugboro, Effective strategic planning in public transit systems,, Transportation Research Part E, 44 (2008), 420.  doi: 10.1016/j.tre.2006.10.008.  Google Scholar

[12]

R. J. La and V. Anantharam, Optimal routing control: Repeated game approach,, IEEE Transactions on Automatic Control, 47 (2002), 437.  doi: 10.1109/9.989076.  Google Scholar

[13]

G. Laporte, J. A. Mesa and P. Federico, A game theoretic frame work for the robust railway transit network design problem,, Transportation Research Part B, 44 (2010), 447.  doi: 10.1016/j.trb.2009.08.004.  Google Scholar

[14]

Z.-Q. Luo, J.-S. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints,", Cambridge University Press, (1996).  doi: 10.1017/CBO9780511983658.  Google Scholar

[15]

Q. Meng, H. Yang and M. G. H. Bell, An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem,, Transportation Research Part B, 35 (2001), 83.  doi: 10.1016/S0191-2615(00)00016-3.  Google Scholar

[16]

Y. Nie, H. M. Zhang and D. H. Lee, Models and algorithms for the traffic assignment problem with link capacity constraints,, Transportation Research Part B, 38 (2004), 285.  doi: 10.1016/S0191-2615(03)00010-9.  Google Scholar

[17]

J. S. Pang, The generalized quasi-variational inequality problem,, Mathematics of Operations Research, 7 (1982), 211.  doi: 10.1287/moor.7.2.211.  Google Scholar

[18]

M. Patriksson and R. T. Rockafellar, A mathematical model and descent algorithm for bilevel traffic management,, Transportation Science, 36 (2002), 271.  doi: 10.1287/trsc.36.3.271.7826.  Google Scholar

[19]

K. Shimizu, Y. Ishizuka and J. F. Bard, "Non-Differentiable and Two-Level Mathematical Programming,", Kluwer Academic Publishers, (1997).   Google Scholar

[20]

L. J. Sun and Z. Y. Gao, An equilibrium model for urban transit assignment based on game theory,, European Journal of Operational Research, 181 (2007), 305.  doi: 10.1016/j.ejor.2006.05.028.  Google Scholar

[21]

T. Van Vuren, D. Van Vliet and M. Smith, Combined equilibrium in a network with partial route guidance,, in, (1990), 375.   Google Scholar

[22]

T. Van Vuren and D. Watling, A multiple user class assignment model for route guidance,, Transportation Research Record, 1306 (1991), 22.   Google Scholar

[23]

Q.-Y. Yan, J.-B. Li and J.-L. Zhang, Licensing schemes in Stackelberg model under asymmetric information of product costs,, Journal of Industrial and Management Optimization, 3 (2007), 763.  doi: 10.3934/jimo.2007.3.763.  Google Scholar

[24]

H. Yang, X. N. Zhang and Q. Meng, Modeling private highways in networks with entry-exit based toll charges,, Transportation Research Part B, 38 (2004), 191.  doi: 10.1016/S0191-2615(03)00050-X.  Google Scholar

[25]

H. Yang, X. N. Zhang and Q. Meng, Stackelberg games and multiple equilibrium behaviors on networks,, Transportation Research Part B, 41 (2007), 841.  doi: 10.1016/j.trb.2007.03.002.  Google Scholar

[26]

J. Zhou, W. H. K. Lam and B. Heydecker, The generalized Nash equilibrium model for oligopolistic transit market with elastic demand,, Transportation Research Part B, 39 (2005), 519.  doi: 10.1016/j.trb.2004.07.003.  Google Scholar

[27]

D. Zhu and P. Marcotte, Modified descent methods for solving the monotone variational inequality problem,, Operations Research Letters, 14 (1993), 111.  doi: 10.1016/0167-6377(93)90103-N.  Google Scholar

show all references

References:
[1]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Second edition, "Nonlinear Programming: Theory and Algorithms,", Wiley, (1993).   Google Scholar

[2]

A. Bensoussan, Points de Nash dans le cas de fonctionnelles quadratiques et jeux différentials linéaires à $N$ personnes,, SIAM Journal Control, 12 (1974), 460.  doi: 10.1137/0312037.  Google Scholar

[3]

D. P. Bertsekas, "Constrained Optimization and Lagrange Multiplier Methods,", Computer Science and Applied Mathematics, (1982).   Google Scholar

[4]

T. Boulogne, E. Altman, H. Kameda and O. Pourtallier, Mixed equilibrium (ME) for multi-class routing games,, IEEE Transactions on Automatic Control, 47 (2002), 903.  doi: 10.1109/TAC.2002.1008357.  Google Scholar

[5]

W.-K. Ching, S.-M. Choi and M. Huang, Optimal service capacity in a multiple-server queueing system: A game theory approach,, Journal of Industrial and Management Optimization, 6 (2010), 73.   Google Scholar

[6]

M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,, Mathematical Programming, 53 (1992), 99.  doi: 10.1007/BF01585696.  Google Scholar

[7]

P. T. Harker, Generalized Nash games and quasi-variational inequalities,, European Journal of Operational Research, 54 (1991), 81.  doi: 10.1016/0377-2217(91)90325-P.  Google Scholar

[8]

P. T. Harker, Multiple equilibrium behaviors on networks,, Transportation Science, 22 (1988), 39.  doi: 10.1287/trsc.22.1.39.  Google Scholar

[9]

B.-S. He, H. Yang and C.-S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities,, European Journal of Operational Research, 159 (2004), 35.  doi: 10.1016/S0377-2217(03)00385-0.  Google Scholar

[10]

D. W. Hearn and M. V. Ramana, Solving congestion toll pricing models,, in, (1998), 109.   Google Scholar

[11]

O. Kofi and I. Ugboro, Effective strategic planning in public transit systems,, Transportation Research Part E, 44 (2008), 420.  doi: 10.1016/j.tre.2006.10.008.  Google Scholar

[12]

R. J. La and V. Anantharam, Optimal routing control: Repeated game approach,, IEEE Transactions on Automatic Control, 47 (2002), 437.  doi: 10.1109/9.989076.  Google Scholar

[13]

G. Laporte, J. A. Mesa and P. Federico, A game theoretic frame work for the robust railway transit network design problem,, Transportation Research Part B, 44 (2010), 447.  doi: 10.1016/j.trb.2009.08.004.  Google Scholar

[14]

Z.-Q. Luo, J.-S. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints,", Cambridge University Press, (1996).  doi: 10.1017/CBO9780511983658.  Google Scholar

[15]

Q. Meng, H. Yang and M. G. H. Bell, An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem,, Transportation Research Part B, 35 (2001), 83.  doi: 10.1016/S0191-2615(00)00016-3.  Google Scholar

[16]

Y. Nie, H. M. Zhang and D. H. Lee, Models and algorithms for the traffic assignment problem with link capacity constraints,, Transportation Research Part B, 38 (2004), 285.  doi: 10.1016/S0191-2615(03)00010-9.  Google Scholar

[17]

J. S. Pang, The generalized quasi-variational inequality problem,, Mathematics of Operations Research, 7 (1982), 211.  doi: 10.1287/moor.7.2.211.  Google Scholar

[18]

M. Patriksson and R. T. Rockafellar, A mathematical model and descent algorithm for bilevel traffic management,, Transportation Science, 36 (2002), 271.  doi: 10.1287/trsc.36.3.271.7826.  Google Scholar

[19]

K. Shimizu, Y. Ishizuka and J. F. Bard, "Non-Differentiable and Two-Level Mathematical Programming,", Kluwer Academic Publishers, (1997).   Google Scholar

[20]

L. J. Sun and Z. Y. Gao, An equilibrium model for urban transit assignment based on game theory,, European Journal of Operational Research, 181 (2007), 305.  doi: 10.1016/j.ejor.2006.05.028.  Google Scholar

[21]

T. Van Vuren, D. Van Vliet and M. Smith, Combined equilibrium in a network with partial route guidance,, in, (1990), 375.   Google Scholar

[22]

T. Van Vuren and D. Watling, A multiple user class assignment model for route guidance,, Transportation Research Record, 1306 (1991), 22.   Google Scholar

[23]

Q.-Y. Yan, J.-B. Li and J.-L. Zhang, Licensing schemes in Stackelberg model under asymmetric information of product costs,, Journal of Industrial and Management Optimization, 3 (2007), 763.  doi: 10.3934/jimo.2007.3.763.  Google Scholar

[24]

H. Yang, X. N. Zhang and Q. Meng, Modeling private highways in networks with entry-exit based toll charges,, Transportation Research Part B, 38 (2004), 191.  doi: 10.1016/S0191-2615(03)00050-X.  Google Scholar

[25]

H. Yang, X. N. Zhang and Q. Meng, Stackelberg games and multiple equilibrium behaviors on networks,, Transportation Research Part B, 41 (2007), 841.  doi: 10.1016/j.trb.2007.03.002.  Google Scholar

[26]

J. Zhou, W. H. K. Lam and B. Heydecker, The generalized Nash equilibrium model for oligopolistic transit market with elastic demand,, Transportation Research Part B, 39 (2005), 519.  doi: 10.1016/j.trb.2004.07.003.  Google Scholar

[27]

D. Zhu and P. Marcotte, Modified descent methods for solving the monotone variational inequality problem,, Operations Research Letters, 14 (1993), 111.  doi: 10.1016/0167-6377(93)90103-N.  Google Scholar

[1]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[2]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[3]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[4]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[5]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[6]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[7]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[8]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[11]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[12]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (120)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]