- Previous Article
- JIMO Home
- This Issue
-
Next Article
Polymorphic uncertain nonlinear programming model and algorithm for maximizing the fatigue life of V-belt drive
A Stackelberg game management model of the urban public transport
1. | School of Mathematical Sciences, Qufu Normal University, Qufu Shandong, 273165, China |
2. | School of Traffic and Transportation, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China |
3. | School of Management Science, Qufu Normal University, Rizhao Shandong, 276800 |
References:
[1] |
M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Second edition, "Nonlinear Programming: Theory and Algorithms,", Wiley, (1993). Google Scholar |
[2] |
A. Bensoussan, Points de Nash dans le cas de fonctionnelles quadratiques et jeux différentials linéaires à $N$ personnes,, SIAM Journal Control, 12 (1974), 460.
doi: 10.1137/0312037. |
[3] |
D. P. Bertsekas, "Constrained Optimization and Lagrange Multiplier Methods,", Computer Science and Applied Mathematics, (1982).
|
[4] |
T. Boulogne, E. Altman, H. Kameda and O. Pourtallier, Mixed equilibrium (ME) for multi-class routing games,, IEEE Transactions on Automatic Control, 47 (2002), 903.
doi: 10.1109/TAC.2002.1008357. |
[5] |
W.-K. Ching, S.-M. Choi and M. Huang, Optimal service capacity in a multiple-server queueing system: A game theory approach,, Journal of Industrial and Management Optimization, 6 (2010), 73.
|
[6] |
M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,, Mathematical Programming, 53 (1992), 99.
doi: 10.1007/BF01585696. |
[7] |
P. T. Harker, Generalized Nash games and quasi-variational inequalities,, European Journal of Operational Research, 54 (1991), 81.
doi: 10.1016/0377-2217(91)90325-P. |
[8] |
P. T. Harker, Multiple equilibrium behaviors on networks,, Transportation Science, 22 (1988), 39.
doi: 10.1287/trsc.22.1.39. |
[9] |
B.-S. He, H. Yang and C.-S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities,, European Journal of Operational Research, 159 (2004), 35.
doi: 10.1016/S0377-2217(03)00385-0. |
[10] |
D. W. Hearn and M. V. Ramana, Solving congestion toll pricing models,, in, (1998), 109. Google Scholar |
[11] |
O. Kofi and I. Ugboro, Effective strategic planning in public transit systems,, Transportation Research Part E, 44 (2008), 420.
doi: 10.1016/j.tre.2006.10.008. |
[12] |
R. J. La and V. Anantharam, Optimal routing control: Repeated game approach,, IEEE Transactions on Automatic Control, 47 (2002), 437.
doi: 10.1109/9.989076. |
[13] |
G. Laporte, J. A. Mesa and P. Federico, A game theoretic frame work for the robust railway transit network design problem,, Transportation Research Part B, 44 (2010), 447.
doi: 10.1016/j.trb.2009.08.004. |
[14] |
Z.-Q. Luo, J.-S. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints,", Cambridge University Press, (1996).
doi: 10.1017/CBO9780511983658. |
[15] |
Q. Meng, H. Yang and M. G. H. Bell, An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem,, Transportation Research Part B, 35 (2001), 83.
doi: 10.1016/S0191-2615(00)00016-3. |
[16] |
Y. Nie, H. M. Zhang and D. H. Lee, Models and algorithms for the traffic assignment problem with link capacity constraints,, Transportation Research Part B, 38 (2004), 285.
doi: 10.1016/S0191-2615(03)00010-9. |
[17] |
J. S. Pang, The generalized quasi-variational inequality problem,, Mathematics of Operations Research, 7 (1982), 211.
doi: 10.1287/moor.7.2.211. |
[18] |
M. Patriksson and R. T. Rockafellar, A mathematical model and descent algorithm for bilevel traffic management,, Transportation Science, 36 (2002), 271.
doi: 10.1287/trsc.36.3.271.7826. |
[19] |
K. Shimizu, Y. Ishizuka and J. F. Bard, "Non-Differentiable and Two-Level Mathematical Programming,", Kluwer Academic Publishers, (1997).
|
[20] |
L. J. Sun and Z. Y. Gao, An equilibrium model for urban transit assignment based on game theory,, European Journal of Operational Research, 181 (2007), 305.
doi: 10.1016/j.ejor.2006.05.028. |
[21] |
T. Van Vuren, D. Van Vliet and M. Smith, Combined equilibrium in a network with partial route guidance,, in, (1990), 375. Google Scholar |
[22] |
T. Van Vuren and D. Watling, A multiple user class assignment model for route guidance,, Transportation Research Record, 1306 (1991), 22. Google Scholar |
[23] |
Q.-Y. Yan, J.-B. Li and J.-L. Zhang, Licensing schemes in Stackelberg model under asymmetric information of product costs,, Journal of Industrial and Management Optimization, 3 (2007), 763.
doi: 10.3934/jimo.2007.3.763. |
[24] |
H. Yang, X. N. Zhang and Q. Meng, Modeling private highways in networks with entry-exit based toll charges,, Transportation Research Part B, 38 (2004), 191.
doi: 10.1016/S0191-2615(03)00050-X. |
[25] |
H. Yang, X. N. Zhang and Q. Meng, Stackelberg games and multiple equilibrium behaviors on networks,, Transportation Research Part B, 41 (2007), 841.
doi: 10.1016/j.trb.2007.03.002. |
[26] |
J. Zhou, W. H. K. Lam and B. Heydecker, The generalized Nash equilibrium model for oligopolistic transit market with elastic demand,, Transportation Research Part B, 39 (2005), 519.
doi: 10.1016/j.trb.2004.07.003. |
[27] |
D. Zhu and P. Marcotte, Modified descent methods for solving the monotone variational inequality problem,, Operations Research Letters, 14 (1993), 111.
doi: 10.1016/0167-6377(93)90103-N. |
show all references
References:
[1] |
M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Second edition, "Nonlinear Programming: Theory and Algorithms,", Wiley, (1993). Google Scholar |
[2] |
A. Bensoussan, Points de Nash dans le cas de fonctionnelles quadratiques et jeux différentials linéaires à $N$ personnes,, SIAM Journal Control, 12 (1974), 460.
doi: 10.1137/0312037. |
[3] |
D. P. Bertsekas, "Constrained Optimization and Lagrange Multiplier Methods,", Computer Science and Applied Mathematics, (1982).
|
[4] |
T. Boulogne, E. Altman, H. Kameda and O. Pourtallier, Mixed equilibrium (ME) for multi-class routing games,, IEEE Transactions on Automatic Control, 47 (2002), 903.
doi: 10.1109/TAC.2002.1008357. |
[5] |
W.-K. Ching, S.-M. Choi and M. Huang, Optimal service capacity in a multiple-server queueing system: A game theory approach,, Journal of Industrial and Management Optimization, 6 (2010), 73.
|
[6] |
M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems,, Mathematical Programming, 53 (1992), 99.
doi: 10.1007/BF01585696. |
[7] |
P. T. Harker, Generalized Nash games and quasi-variational inequalities,, European Journal of Operational Research, 54 (1991), 81.
doi: 10.1016/0377-2217(91)90325-P. |
[8] |
P. T. Harker, Multiple equilibrium behaviors on networks,, Transportation Science, 22 (1988), 39.
doi: 10.1287/trsc.22.1.39. |
[9] |
B.-S. He, H. Yang and C.-S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities,, European Journal of Operational Research, 159 (2004), 35.
doi: 10.1016/S0377-2217(03)00385-0. |
[10] |
D. W. Hearn and M. V. Ramana, Solving congestion toll pricing models,, in, (1998), 109. Google Scholar |
[11] |
O. Kofi and I. Ugboro, Effective strategic planning in public transit systems,, Transportation Research Part E, 44 (2008), 420.
doi: 10.1016/j.tre.2006.10.008. |
[12] |
R. J. La and V. Anantharam, Optimal routing control: Repeated game approach,, IEEE Transactions on Automatic Control, 47 (2002), 437.
doi: 10.1109/9.989076. |
[13] |
G. Laporte, J. A. Mesa and P. Federico, A game theoretic frame work for the robust railway transit network design problem,, Transportation Research Part B, 44 (2010), 447.
doi: 10.1016/j.trb.2009.08.004. |
[14] |
Z.-Q. Luo, J.-S. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints,", Cambridge University Press, (1996).
doi: 10.1017/CBO9780511983658. |
[15] |
Q. Meng, H. Yang and M. G. H. Bell, An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem,, Transportation Research Part B, 35 (2001), 83.
doi: 10.1016/S0191-2615(00)00016-3. |
[16] |
Y. Nie, H. M. Zhang and D. H. Lee, Models and algorithms for the traffic assignment problem with link capacity constraints,, Transportation Research Part B, 38 (2004), 285.
doi: 10.1016/S0191-2615(03)00010-9. |
[17] |
J. S. Pang, The generalized quasi-variational inequality problem,, Mathematics of Operations Research, 7 (1982), 211.
doi: 10.1287/moor.7.2.211. |
[18] |
M. Patriksson and R. T. Rockafellar, A mathematical model and descent algorithm for bilevel traffic management,, Transportation Science, 36 (2002), 271.
doi: 10.1287/trsc.36.3.271.7826. |
[19] |
K. Shimizu, Y. Ishizuka and J. F. Bard, "Non-Differentiable and Two-Level Mathematical Programming,", Kluwer Academic Publishers, (1997).
|
[20] |
L. J. Sun and Z. Y. Gao, An equilibrium model for urban transit assignment based on game theory,, European Journal of Operational Research, 181 (2007), 305.
doi: 10.1016/j.ejor.2006.05.028. |
[21] |
T. Van Vuren, D. Van Vliet and M. Smith, Combined equilibrium in a network with partial route guidance,, in, (1990), 375. Google Scholar |
[22] |
T. Van Vuren and D. Watling, A multiple user class assignment model for route guidance,, Transportation Research Record, 1306 (1991), 22. Google Scholar |
[23] |
Q.-Y. Yan, J.-B. Li and J.-L. Zhang, Licensing schemes in Stackelberg model under asymmetric information of product costs,, Journal of Industrial and Management Optimization, 3 (2007), 763.
doi: 10.3934/jimo.2007.3.763. |
[24] |
H. Yang, X. N. Zhang and Q. Meng, Modeling private highways in networks with entry-exit based toll charges,, Transportation Research Part B, 38 (2004), 191.
doi: 10.1016/S0191-2615(03)00050-X. |
[25] |
H. Yang, X. N. Zhang and Q. Meng, Stackelberg games and multiple equilibrium behaviors on networks,, Transportation Research Part B, 41 (2007), 841.
doi: 10.1016/j.trb.2007.03.002. |
[26] |
J. Zhou, W. H. K. Lam and B. Heydecker, The generalized Nash equilibrium model for oligopolistic transit market with elastic demand,, Transportation Research Part B, 39 (2005), 519.
doi: 10.1016/j.trb.2004.07.003. |
[27] |
D. Zhu and P. Marcotte, Modified descent methods for solving the monotone variational inequality problem,, Operations Research Letters, 14 (1993), 111.
doi: 10.1016/0167-6377(93)90103-N. |
[1] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[2] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[3] |
Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[4] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[5] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[6] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[7] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[8] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[9] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[10] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[11] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[12] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]