• Previous Article
    Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm
  • JIMO Home
  • This Issue
  • Next Article
    An approximation algorithm for the $k$-level facility location problem with submodular penalties
July  2012, 8(3): 531-547. doi: 10.3934/jimo.2012.8.531

Optimal investment with a value-at-risk constraint

1. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China

2. 

Department of Mathematics, Nankai University, Tianjin 300071, China

3. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received  January 2011 Revised  March 2012 Published  June 2012

We consider constrained investment problem with the objective of minimizing the ruin probability. In this paper, we formulate the cash reserve and investment model for the insurance company and analyze the value-at-risk ($VaR$) in a short time horizon. For risk regulation, we impose it as a risk constraint dynamically. Then the problem becomes minimizing the probability of ruin together with the imposed risk constraint. By solving the corresponding Hamilton-Jacobi-Bellman equations, we derive analytic expressions for the optimal value function and the corresponding optimal strategies. Looking at the value-at-risk alone, we show that it is possible to reduce the overall risk by an increased exposure to the risky asset. This is aligned with the risk diversification effect for negative correlated or uncorrelated risky asset with the stochastic of the fundamental insurance business. Moreover, studying the optimal strategies, we find that a different investment strategy will be in place depending on the Sharpe ratio of the risky asset.
Citation: Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531
References:
[1]

S. Asmussen, "Ruin Probabilities,", Advanced Series on Statistical Science & Applied Probability, 2 (2000).   Google Scholar

[2]

L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint,, Insurance: Mathematics and Economics, 42 (2008), 968.  doi: 10.1016/j.insmatheco.2007.11.002.  Google Scholar

[3]

R. Bingham, Risk and return: Underwriting, investment and leverage probability of surplus drawdown and pricing for underwriting and investment risk,, in, (2000), 31.   Google Scholar

[4]

S. Bouma, "Risk Management in the Insurance Industry and Solvency II,", European Survey, (2006).   Google Scholar

[5]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.   Google Scholar

[6]

J. Cai and K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measure,, Astin Bulletin, 37 (2007), 93.  doi: 10.2143/AST.37.1.2020800.  Google Scholar

[7]

J. Cai, K. S. Tan, C. G. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures,, Insurance: Mathematics and Economics, 43 (2008), 185.  doi: 10.1016/j.insmatheco.2008.05.011.  Google Scholar

[8]

S. Cheng, H. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model,, Insurance: Mathematics and Economics, 26 (2000), 239.  doi: 10.1016/S0167-6687(99)00053-0.  Google Scholar

[9]

Y. H. Dong and G. J. Wang, Ruin probability for renewal risk model with negative risk sums,, Journal of Industrial and Management Optimization, 2 (2006), 229.   Google Scholar

[10]

W. H. Fleming, and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,", Applications of Mathematics (New York), 25 (1993).   Google Scholar

[11]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, North American Actuarial Journal, 2 (1998), 48.   Google Scholar

[12]

H. Gerber and H. Yang, Absolute ruin probabilities in a jump diffusion risk model with investment,, North American Actuarial Journal, 11 (2007), 159.   Google Scholar

[13]

C. Hipp and M. Plum, Optimal investment for insurers,, Insurance: Mathematics and Economics, 27 (2000), 215.   Google Scholar

[14]

R. Kostadinova, Optimal investment for insurers when the stock price follows an exponential Lévy process,, Insurance: Mathematics and Economics, 41 (2007), 250.  doi: 10.1016/j.insmatheco.2006.10.018.  Google Scholar

[15]

C. Liu and H. Yang, Optimal investment for an insurer to minimize its probability of ruin,, North American Actuarial Journal, 8 (2004), 11.   Google Scholar

[16]

S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance Mathematics Economics, 42 (2008), 434.  doi: 10.1016/j.insmatheco.2007.04.002.  Google Scholar

[17]

H. M. Markowitz, "Portfolio Selection: Efficient Diversification of Investments,", 2$^n^d$ edition, (1991).   Google Scholar

[18]

J. Paulsen, Ruin models with investment income,, Probability Surveys, 5 (2008), 416.   Google Scholar

[19]

D. S. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.   Google Scholar

[20]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, The Annals of Applied Probability, 12 (2002), 890.  doi: 10.1214/aoap/1031863173.  Google Scholar

[21]

J. Serrin, Gradient estimates for solutions of nonlinear elliptic and parabolic equations,, in, (1971), 565.   Google Scholar

[22]

W. F. Sharpe, The Sharpe ratio,, Journal of Portfolio Management, (1994), 49.   Google Scholar

[23]

T. K. Siu, J. W. Lau and H. Yang, Ruin theory under a generalized jump-diffusion model with regime switching,, Applied Mathematical Sciences, 2 (2008), 1415.   Google Scholar

[24]

Q. Tang and G. Tsitsiashvili, Finite-and infinite-time ruin probabilities in the presence of stochastic returns on investments,, Advances in Applied Probability, 36 (2004), 1278.  doi: 10.1239/aap/1103662967.  Google Scholar

[25]

L. Xu and R. M. Wang, Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate,, Journal of Industrial and Management Optimization, 2 (2006), 165.   Google Scholar

[26]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process,, Insurance: Mathematics and Economics, 35 (2005), 615.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[27]

K. F. C. Yiu, Optimal portfolio under a value-at-risk constraint,, Journal of Economic Dynamics and Control, 28 (2004), 1317.   Google Scholar

[28]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains,, Journal of Industrial and Management Optimization, 4 (2008), 81.   Google Scholar

[29]

K. C. Yuen, G. J. Wang and K. W. Ng, Ruin probabilities for a risk process with stochastic return on investments,, Stochastic Processes and their Applications, 110 (2004), 259.   Google Scholar

show all references

References:
[1]

S. Asmussen, "Ruin Probabilities,", Advanced Series on Statistical Science & Applied Probability, 2 (2000).   Google Scholar

[2]

L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint,, Insurance: Mathematics and Economics, 42 (2008), 968.  doi: 10.1016/j.insmatheco.2007.11.002.  Google Scholar

[3]

R. Bingham, Risk and return: Underwriting, investment and leverage probability of surplus drawdown and pricing for underwriting and investment risk,, in, (2000), 31.   Google Scholar

[4]

S. Bouma, "Risk Management in the Insurance Industry and Solvency II,", European Survey, (2006).   Google Scholar

[5]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.   Google Scholar

[6]

J. Cai and K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measure,, Astin Bulletin, 37 (2007), 93.  doi: 10.2143/AST.37.1.2020800.  Google Scholar

[7]

J. Cai, K. S. Tan, C. G. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures,, Insurance: Mathematics and Economics, 43 (2008), 185.  doi: 10.1016/j.insmatheco.2008.05.011.  Google Scholar

[8]

S. Cheng, H. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model,, Insurance: Mathematics and Economics, 26 (2000), 239.  doi: 10.1016/S0167-6687(99)00053-0.  Google Scholar

[9]

Y. H. Dong and G. J. Wang, Ruin probability for renewal risk model with negative risk sums,, Journal of Industrial and Management Optimization, 2 (2006), 229.   Google Scholar

[10]

W. H. Fleming, and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,", Applications of Mathematics (New York), 25 (1993).   Google Scholar

[11]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin,, North American Actuarial Journal, 2 (1998), 48.   Google Scholar

[12]

H. Gerber and H. Yang, Absolute ruin probabilities in a jump diffusion risk model with investment,, North American Actuarial Journal, 11 (2007), 159.   Google Scholar

[13]

C. Hipp and M. Plum, Optimal investment for insurers,, Insurance: Mathematics and Economics, 27 (2000), 215.   Google Scholar

[14]

R. Kostadinova, Optimal investment for insurers when the stock price follows an exponential Lévy process,, Insurance: Mathematics and Economics, 41 (2007), 250.  doi: 10.1016/j.insmatheco.2006.10.018.  Google Scholar

[15]

C. Liu and H. Yang, Optimal investment for an insurer to minimize its probability of ruin,, North American Actuarial Journal, 8 (2004), 11.   Google Scholar

[16]

S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance Mathematics Economics, 42 (2008), 434.  doi: 10.1016/j.insmatheco.2007.04.002.  Google Scholar

[17]

H. M. Markowitz, "Portfolio Selection: Efficient Diversification of Investments,", 2$^n^d$ edition, (1991).   Google Scholar

[18]

J. Paulsen, Ruin models with investment income,, Probability Surveys, 5 (2008), 416.   Google Scholar

[19]

D. S. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.   Google Scholar

[20]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, The Annals of Applied Probability, 12 (2002), 890.  doi: 10.1214/aoap/1031863173.  Google Scholar

[21]

J. Serrin, Gradient estimates for solutions of nonlinear elliptic and parabolic equations,, in, (1971), 565.   Google Scholar

[22]

W. F. Sharpe, The Sharpe ratio,, Journal of Portfolio Management, (1994), 49.   Google Scholar

[23]

T. K. Siu, J. W. Lau and H. Yang, Ruin theory under a generalized jump-diffusion model with regime switching,, Applied Mathematical Sciences, 2 (2008), 1415.   Google Scholar

[24]

Q. Tang and G. Tsitsiashvili, Finite-and infinite-time ruin probabilities in the presence of stochastic returns on investments,, Advances in Applied Probability, 36 (2004), 1278.  doi: 10.1239/aap/1103662967.  Google Scholar

[25]

L. Xu and R. M. Wang, Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate,, Journal of Industrial and Management Optimization, 2 (2006), 165.   Google Scholar

[26]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process,, Insurance: Mathematics and Economics, 35 (2005), 615.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[27]

K. F. C. Yiu, Optimal portfolio under a value-at-risk constraint,, Journal of Economic Dynamics and Control, 28 (2004), 1317.   Google Scholar

[28]

K. F. C. Yiu, S. Y. Wang and K. L. Mak, Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains,, Journal of Industrial and Management Optimization, 4 (2008), 81.   Google Scholar

[29]

K. C. Yuen, G. J. Wang and K. W. Ng, Ruin probabilities for a risk process with stochastic return on investments,, Stochastic Processes and their Applications, 110 (2004), 259.   Google Scholar

[1]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[2]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[3]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[6]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[7]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[8]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[11]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[12]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[13]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[14]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[15]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[16]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[17]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]