-
Previous Article
Single-period inventory model with discrete stochastic demand based on prospect theory
- JIMO Home
- This Issue
-
Next Article
Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm
A Max-Min clustering method for $k$-means algorithm of data clustering
1. | School of Information Engineering, Hangzhou Dianzi University, Hangzhou 310012, China |
2. | School of Software Engineering, Hangzhou Dianzi University, Hangzhou 310012, China |
3. | School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China |
References:
[1] |
V. S. Ananthanarayana, M. Narasimha Murty and D. K. Subramanian, Rapid and brief communication efficient clustering of large data sets, Pattern Recognition, 34 (2001), 2561-2563. |
[2] |
Sanghamitra Bandyopadhyay and Ujjwal Maulik, An evolutionary technique based on K-means algorithm for optimal clustering in $R^N$, Information Sciences, 146 (2002), 221-237. |
[3] |
Bjarni Bodvarsson, M. Morkebjerg, L. K. Hansen, G. M. Knudsen and C. Svarer, Extraction of time activity curves from positron emission tomography: K-means clustering or non-negative matrix factorization, NeuroImage, 31 (2006), 185-186. |
[4] |
Paul S. Bradley and Usama M. Fayyad, Refining max-min points for K-means clustering, in "Proc. 15th International Conf. on Machine Learning," Morgan Kaufmann, San Francisco, CA, (1998), 91-99. |
[5] |
P. S. Bradley, O. L. Mangasarian and W. N. Street, Clustering via concave minimization, in "Advances in Neural Information Systems," (eds. M. C. Mozer, M. I. Jordan and T. Petsche), MIT Press, Cambridge, MA, (1996), 368-374. |
[6] |
R. O. Duda, P. E. Hart and D. G. Stork, "Pattern Classification," second edition, Wiley-Interscience, New York, 2001. |
[7] |
David J. Hand and Wojtek J. Krzanowski, Optimising k-means clustering results with standard software packages, Computational Statistics & Data Analysis, 49 (2005), 969-973. |
[8] |
A. K. Jain and R. C. Dubes, "Algorithms for Clustering Data," Prentice Hall Advanced Reference Series, Prentice-Hall, Englewood Cliffs, NJ, 1988. |
[9] |
Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman and Angela Y. Wu, A local search approximation algorithm for k-means clustering, Computational Geometry, 28 (2004), 89-112. |
[10] |
Shehroz S. Khan and Amir Ahmad, Cluster center max-minization algorithm for K-means clustering, Pattern Recognition Letters, 25 (2004), 1293-1302.
doi: 10.1016/j.patrec.2004.04.007. |
[11] |
R. J. Kuo, H. S. Wang, Tung-Lai Hu and S. H. Chou, Application of ant K-means on clustering analysis, Computers & Mathematics with Applications, 50 (2005), 1709-1724. |
[12] |
Youssef M. Marzouk and Ahmed F. Ghoniem, K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations, Journal of Computational Physics, 207 (2005), 493-528. |
[13] |
Boris Mirkin, Clustering algorithms: A review, in "Mathematical Classification and Clustering," Chapter 3, Kluwer Academic Publishers, (1996), 109-169. |
[14] |
Boris Mirkin, K-means clustering, in "Clustering for Data Mining," Chapter 3, Taylor & Francis Group, (2005), 75-110. |
[15] |
Boris Mirkin, Concept learning and feature selection based on square-error clustering, Machine Learning, 35 (1999), 25-39. |
[16] |
D. J. Newman, S. Hettich, C. L. Blake and C. J. Merz, "UCI Repository of Machine Learning Databases," University of California, Department of Information and Computer Science, Irvine, CA, 1998. Available from: http://www.ics.uci.edu/~mlearn/MLRepository.html. |
[17] |
Makoto Otsubo, Katsushi Sato and Atsushi Yamaji, Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering, Journal of Structural Geology, 28 (2006), 991-997. |
[18] |
Georg Peters, Some refinements of rough k-means clustering, Pattern Recognition, 39 (2006), 1481-1491. |
[19] |
S. Z. Selim and M. A. Ismail, K-means type algorithms: A generalized convergence theorem and characterization of local optimality, IEEE Trans. Pattern Anal. Mach. Inteli, 6 (1984), 81-87. |
[20] |
Y. Yuan, J. Yan and C. Xu, Polynomial Smooth Support Vector Machine(PSSVM), Chinese Journal Of Computers, 28 (2005), 9-17. |
[21] |
Y. Yuan and T. Huang, A Polynomial Smooth Support Vector Machine for Classification, Lecture Note in Artificial Intelligence, 3584 (2005), 157-164. |
[22] |
Y. Yuan, W. G. Fan and D. M. Pu, Spline function smooth support vector machine for classification, Journal of Industrial Management and Optimization, 3 (2007), 529-542. |
show all references
References:
[1] |
V. S. Ananthanarayana, M. Narasimha Murty and D. K. Subramanian, Rapid and brief communication efficient clustering of large data sets, Pattern Recognition, 34 (2001), 2561-2563. |
[2] |
Sanghamitra Bandyopadhyay and Ujjwal Maulik, An evolutionary technique based on K-means algorithm for optimal clustering in $R^N$, Information Sciences, 146 (2002), 221-237. |
[3] |
Bjarni Bodvarsson, M. Morkebjerg, L. K. Hansen, G. M. Knudsen and C. Svarer, Extraction of time activity curves from positron emission tomography: K-means clustering or non-negative matrix factorization, NeuroImage, 31 (2006), 185-186. |
[4] |
Paul S. Bradley and Usama M. Fayyad, Refining max-min points for K-means clustering, in "Proc. 15th International Conf. on Machine Learning," Morgan Kaufmann, San Francisco, CA, (1998), 91-99. |
[5] |
P. S. Bradley, O. L. Mangasarian and W. N. Street, Clustering via concave minimization, in "Advances in Neural Information Systems," (eds. M. C. Mozer, M. I. Jordan and T. Petsche), MIT Press, Cambridge, MA, (1996), 368-374. |
[6] |
R. O. Duda, P. E. Hart and D. G. Stork, "Pattern Classification," second edition, Wiley-Interscience, New York, 2001. |
[7] |
David J. Hand and Wojtek J. Krzanowski, Optimising k-means clustering results with standard software packages, Computational Statistics & Data Analysis, 49 (2005), 969-973. |
[8] |
A. K. Jain and R. C. Dubes, "Algorithms for Clustering Data," Prentice Hall Advanced Reference Series, Prentice-Hall, Englewood Cliffs, NJ, 1988. |
[9] |
Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman and Angela Y. Wu, A local search approximation algorithm for k-means clustering, Computational Geometry, 28 (2004), 89-112. |
[10] |
Shehroz S. Khan and Amir Ahmad, Cluster center max-minization algorithm for K-means clustering, Pattern Recognition Letters, 25 (2004), 1293-1302.
doi: 10.1016/j.patrec.2004.04.007. |
[11] |
R. J. Kuo, H. S. Wang, Tung-Lai Hu and S. H. Chou, Application of ant K-means on clustering analysis, Computers & Mathematics with Applications, 50 (2005), 1709-1724. |
[12] |
Youssef M. Marzouk and Ahmed F. Ghoniem, K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations, Journal of Computational Physics, 207 (2005), 493-528. |
[13] |
Boris Mirkin, Clustering algorithms: A review, in "Mathematical Classification and Clustering," Chapter 3, Kluwer Academic Publishers, (1996), 109-169. |
[14] |
Boris Mirkin, K-means clustering, in "Clustering for Data Mining," Chapter 3, Taylor & Francis Group, (2005), 75-110. |
[15] |
Boris Mirkin, Concept learning and feature selection based on square-error clustering, Machine Learning, 35 (1999), 25-39. |
[16] |
D. J. Newman, S. Hettich, C. L. Blake and C. J. Merz, "UCI Repository of Machine Learning Databases," University of California, Department of Information and Computer Science, Irvine, CA, 1998. Available from: http://www.ics.uci.edu/~mlearn/MLRepository.html. |
[17] |
Makoto Otsubo, Katsushi Sato and Atsushi Yamaji, Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering, Journal of Structural Geology, 28 (2006), 991-997. |
[18] |
Georg Peters, Some refinements of rough k-means clustering, Pattern Recognition, 39 (2006), 1481-1491. |
[19] |
S. Z. Selim and M. A. Ismail, K-means type algorithms: A generalized convergence theorem and characterization of local optimality, IEEE Trans. Pattern Anal. Mach. Inteli, 6 (1984), 81-87. |
[20] |
Y. Yuan, J. Yan and C. Xu, Polynomial Smooth Support Vector Machine(PSSVM), Chinese Journal Of Computers, 28 (2005), 9-17. |
[21] |
Y. Yuan and T. Huang, A Polynomial Smooth Support Vector Machine for Classification, Lecture Note in Artificial Intelligence, 3584 (2005), 157-164. |
[22] |
Y. Yuan, W. G. Fan and D. M. Pu, Spline function smooth support vector machine for classification, Journal of Industrial Management and Optimization, 3 (2007), 529-542. |
[1] |
Ruiqi Yang, Dachuan Xu, Yicheng Xu, Dongmei Zhang. An adaptive probabilistic algorithm for online k-center clustering. Journal of Industrial and Management Optimization, 2019, 15 (2) : 565-576. doi: 10.3934/jimo.2018057 |
[2] |
Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems and Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022 |
[3] |
Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $-means problem with penalty. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021067 |
[4] |
Min Li, Yishui Wang, Dachuan Xu, Dongmei Zhang. The approximation algorithm based on seeding method for functional $ k $-means problem†. Journal of Industrial and Management Optimization, 2022, 18 (1) : 411-426. doi: 10.3934/jimo.2020160 |
[5] |
Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007 |
[6] |
Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems and Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025 |
[7] |
Fan Yuan, Dachuan Xu, Donglei Du, Min Li. An exact algorithm for stable instances of the $ k $-means problem with penalties in fixed-dimensional Euclidean space. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021122 |
[8] |
Sung Ha Kang, Berta Sandberg, Andy M. Yip. A regularized k-means and multiphase scale segmentation. Inverse Problems and Imaging, 2011, 5 (2) : 407-429. doi: 10.3934/ipi.2011.5.407 |
[9] |
Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial and Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921 |
[10] |
Renato Bruni, Gianpiero Bianchi, Alessandra Reale. A combinatorial optimization approach to the selection of statistical units. Journal of Industrial and Management Optimization, 2016, 12 (2) : 515-527. doi: 10.3934/jimo.2016.12.515 |
[11] |
Daniel Mckenzie, Steven Damelin. Power weighted shortest paths for clustering Euclidean data. Foundations of Data Science, 2019, 1 (3) : 307-327. doi: 10.3934/fods.2019014 |
[12] |
Michael Herty, Lorenzo Pareschi, Giuseppe Visconti. Mean field models for large data–clustering problems. Networks and Heterogeneous Media, 2020, 15 (3) : 463-487. doi: 10.3934/nhm.2020027 |
[13] |
Jia Chen, Ioannis D. Schizas. Multimodal correlations-based data clustering. Foundations of Data Science, 2022 doi: 10.3934/fods.2022011 |
[14] |
Burak Ordin, Adil Bagirov, Ehsan Mohebi. An incremental nonsmooth optimization algorithm for clustering using $ L_1 $ and $ L_\infty $ norms. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2757-2779. doi: 10.3934/jimo.2019079 |
[15] |
Qinglei Zhang, Wenying Feng. Detecting coalition attacks in online advertising: A hybrid data mining approach. Big Data & Information Analytics, 2016, 1 (2&3) : 227-245. doi: 10.3934/bdia.2016006 |
[16] |
Zhen Mei. Manifold data mining helps businesses grow more effectively. Big Data & Information Analytics, 2016, 1 (2&3) : 275-276. doi: 10.3934/bdia.2016009 |
[17] |
Sunmoo Yoon, Maria Patrao, Debbie Schauer, Jose Gutierrez. Prediction models for burden of caregivers applying data mining techniques. Big Data & Information Analytics, 2017 doi: 10.3934/bdia.2017014 |
[18] |
Anupama N, Sudarson Jena. A novel approach using incremental under sampling for data stream mining. Big Data & Information Analytics, 2018 doi: 10.3934/bdia.2017017 |
[19] |
Jinyuan Zhang, Aimin Zhou, Guixu Zhang, Hu Zhang. A clustering based mate selection for evolutionary optimization. Big Data & Information Analytics, 2017, 2 (1) : 77-85. doi: 10.3934/bdia.2017010 |
[20] |
Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]