July  2012, 8(3): 577-590. doi: 10.3934/jimo.2012.8.577

Single-period inventory model with discrete stochastic demand based on prospect theory

1. 

Department of Automation, Tsinghua University, Beijing 100084, China, China, China

Received  March 2011 Revised  November 2011 Published  June 2012

This paper studies a single-period inventory (newsvendor) problem with discrete stochastic demand. In general, most of the previous works are based on the expected profit/cost criterion or expected utility criterion. We consider the effect of irrational factor under uncertainty and therefore incorporate prospect theory into inventory model. Our objective is to maximize the overall value of the prospect, which can be calculated by using the value function and the weighting function. For any given initial inventory level, it can be shown that a state-dependent order-up-to policy is optimal. Further, the optimal policy has a simple structure, and the retailer can easily decide whether to place an order or not. Moreover, the impacts of parameters on the optimal policy are illustrated through numerical experiments.
Citation: Wei Liu, Shiji Song, Cheng Wu. Single-period inventory model with discrete stochastic demand based on prospect theory. Journal of Industrial & Management Optimization, 2012, 8 (3) : 577-590. doi: 10.3934/jimo.2012.8.577
References:
[1]

V. Agrawal and S. Seshadri, Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem,, Manufacturing & Service Operations Management, 2 (2000), 410.   Google Scholar

[2]

M. Allais, Le comportement de l'homme rationnel devant le risque: Critique des postulats et axiomes de l'ecole americaine,, Econometrica, 21 (1953), 503.  doi: 10.2307/1907921.  Google Scholar

[3]

N. Barberis and M. Huang, Mental accounting, loss aversion, and individual stock returns,, Journal of Finance, 56 (2001), 1247.  doi: 10.1111/0022-1082.00367.  Google Scholar

[4]

A. O. Brown and C. S. Tang, The impact of alternative performance measures on single-period inventory policy,, Journal of Industrial and Management Optimization, 2 (2006), 297.   Google Scholar

[5]

L. Eeckhoudt, C. Gollier and H. Schlesinger, The risk-averse (and prudent) newsboy,, Management Science, 41 (1995), 786.  doi: 10.1287/mnsc.41.5.786.  Google Scholar

[6]

M. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales,, Operations Research, 44 (1996), 87.  doi: 10.1287/opre.44.1.87.  Google Scholar

[7]

W. Geng, X. Zhao and D. Gao, A single-period inventory system with a general s-shaped utility and exponential demand,, Journal of Systems Science and Systems Engineering, 19 (2010), 227.  doi: 10.1007/s11518-010-5128-8.  Google Scholar

[8]

J. A. Kahn, Why is production more volatile than sales? Theory and evidence on the stockout-avoidance motive for inventory holding,, Quarterly Journal of Economics, 107 (1992), 481.  doi: 10.2307/2118479.  Google Scholar

[9]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk,, Econometrica, 47 (1979), 263.  doi: 10.2307/1914185.  Google Scholar

[10]

B. Keren and J. S. Pliskin, A benchmark solution for the risk-averse newsvendor problem,, European Journal of Operational Research, 174 (2006), 1643.  doi: 10.1016/j.ejor.2005.03.047.  Google Scholar

[11]

M. Khouja, The single-period (news-vendor) problem: Literature review and suggestions for future research,, Omega-International Journal of Management Science, 27 (1999), 537.  doi: 10.1016/S0305-0483(99)00017-1.  Google Scholar

[12]

H. Lau and A. H. Lau, The newsstand problem: A capacitated multiple-product single-period inventory problem,, European Journal of Operational Research, 94 (1996), 29.  doi: 10.1016/0377-2217(95)00192-1.  Google Scholar

[13]

S. A. Lippman and K. F. McCardle, The competitive newsboy,, Operations Research, 45 (1997), 54.  doi: 10.1287/opre.45.1.54.  Google Scholar

[14]

Y. Liu, M. Peng and L. Li, A prospect theory-based order model under stochastic demand,, Chinese Control and Decision Conference, (2009), 2539.   Google Scholar

[15]

N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions,, Operations Research, 47 (1999), 183.  doi: 10.1287/opre.47.2.183.  Google Scholar

[16]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence,, Management Science, 46 (2000), 404.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[17]

E. Stavrulaki, Inventory decisions for substitutable products with stock-dependent demand,, International Journal of Production Economics, 129 (2011), 65.  doi: 10.1016/j.ijpe.2010.09.002.  Google Scholar

[18]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty,, Journal of Risk and Uncertainty, 5 (1992), 297.   Google Scholar

[19]

C. X. Wang, The loss-averse newsvendor game,, International Journal of Production Economics, 124 (2010), 448.  doi: 10.1016/j.ijpe.2009.12.009.  Google Scholar

[20]

C. X. Wang and S. Webster, The loss-averse newsvendor problem,, Omega-International Journal of Management Science, 37 (2009), 93.  doi: 10.1016/j.omega.2006.10.003.  Google Scholar

[21]

C. X. Wang, S. Webster and N. C. Suresh, Would a risk-averse newsvendor order less at a higher selling price?,, European Journal of Operational Research, 196 (2009), 544.  doi: 10.1016/j.ejor.2008.04.002.  Google Scholar

[22]

X. Zhao, W. Gen and X. Chao and D. Gao, A periodic review inventory system with s-shaped utility function,, Working paper, (2009), 09.   Google Scholar

show all references

References:
[1]

V. Agrawal and S. Seshadri, Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem,, Manufacturing & Service Operations Management, 2 (2000), 410.   Google Scholar

[2]

M. Allais, Le comportement de l'homme rationnel devant le risque: Critique des postulats et axiomes de l'ecole americaine,, Econometrica, 21 (1953), 503.  doi: 10.2307/1907921.  Google Scholar

[3]

N. Barberis and M. Huang, Mental accounting, loss aversion, and individual stock returns,, Journal of Finance, 56 (2001), 1247.  doi: 10.1111/0022-1082.00367.  Google Scholar

[4]

A. O. Brown and C. S. Tang, The impact of alternative performance measures on single-period inventory policy,, Journal of Industrial and Management Optimization, 2 (2006), 297.   Google Scholar

[5]

L. Eeckhoudt, C. Gollier and H. Schlesinger, The risk-averse (and prudent) newsboy,, Management Science, 41 (1995), 786.  doi: 10.1287/mnsc.41.5.786.  Google Scholar

[6]

M. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales,, Operations Research, 44 (1996), 87.  doi: 10.1287/opre.44.1.87.  Google Scholar

[7]

W. Geng, X. Zhao and D. Gao, A single-period inventory system with a general s-shaped utility and exponential demand,, Journal of Systems Science and Systems Engineering, 19 (2010), 227.  doi: 10.1007/s11518-010-5128-8.  Google Scholar

[8]

J. A. Kahn, Why is production more volatile than sales? Theory and evidence on the stockout-avoidance motive for inventory holding,, Quarterly Journal of Economics, 107 (1992), 481.  doi: 10.2307/2118479.  Google Scholar

[9]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk,, Econometrica, 47 (1979), 263.  doi: 10.2307/1914185.  Google Scholar

[10]

B. Keren and J. S. Pliskin, A benchmark solution for the risk-averse newsvendor problem,, European Journal of Operational Research, 174 (2006), 1643.  doi: 10.1016/j.ejor.2005.03.047.  Google Scholar

[11]

M. Khouja, The single-period (news-vendor) problem: Literature review and suggestions for future research,, Omega-International Journal of Management Science, 27 (1999), 537.  doi: 10.1016/S0305-0483(99)00017-1.  Google Scholar

[12]

H. Lau and A. H. Lau, The newsstand problem: A capacitated multiple-product single-period inventory problem,, European Journal of Operational Research, 94 (1996), 29.  doi: 10.1016/0377-2217(95)00192-1.  Google Scholar

[13]

S. A. Lippman and K. F. McCardle, The competitive newsboy,, Operations Research, 45 (1997), 54.  doi: 10.1287/opre.45.1.54.  Google Scholar

[14]

Y. Liu, M. Peng and L. Li, A prospect theory-based order model under stochastic demand,, Chinese Control and Decision Conference, (2009), 2539.   Google Scholar

[15]

N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions,, Operations Research, 47 (1999), 183.  doi: 10.1287/opre.47.2.183.  Google Scholar

[16]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence,, Management Science, 46 (2000), 404.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[17]

E. Stavrulaki, Inventory decisions for substitutable products with stock-dependent demand,, International Journal of Production Economics, 129 (2011), 65.  doi: 10.1016/j.ijpe.2010.09.002.  Google Scholar

[18]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty,, Journal of Risk and Uncertainty, 5 (1992), 297.   Google Scholar

[19]

C. X. Wang, The loss-averse newsvendor game,, International Journal of Production Economics, 124 (2010), 448.  doi: 10.1016/j.ijpe.2009.12.009.  Google Scholar

[20]

C. X. Wang and S. Webster, The loss-averse newsvendor problem,, Omega-International Journal of Management Science, 37 (2009), 93.  doi: 10.1016/j.omega.2006.10.003.  Google Scholar

[21]

C. X. Wang, S. Webster and N. C. Suresh, Would a risk-averse newsvendor order less at a higher selling price?,, European Journal of Operational Research, 196 (2009), 544.  doi: 10.1016/j.ejor.2008.04.002.  Google Scholar

[22]

X. Zhao, W. Gen and X. Chao and D. Gao, A periodic review inventory system with s-shaped utility function,, Working paper, (2009), 09.   Google Scholar

[1]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[2]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[3]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[5]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[8]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[9]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[10]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[13]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[14]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[15]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[16]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[17]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[18]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[19]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]