
Previous Article
An extended lifetime measure for telecommunications networks: Improvements and implementations
 JIMO Home
 This Issue

Next Article
Canonical duality solution for alternating support vector machine
A common set of weight approach using an ideal decision making unit in data envelopment analysis
1.  Department of Mathematics, TehranNorth Branch, Islamic Azad University, P.O. Box 19585936, Tehran, Iran 
2.  Louvain School of Management, Center of Operations Research and Econometrics (CORE), Université catholique de Louvain, L1.03.01, B1348 LouvainlaNeuve, Belgium, Belgium 
3.  Management Information Systems, Lindback Distinguished Chair of Information Systems, La Salle University, Philadelphia, PA19141, United States 
References:
[1] 
P. J. Agrell and P. Bogetoft, Economic and environmental efficiency of district heating plants, Energy Policy, 33 (2005), 13511362. doi: 10.1016/j.enpol.2003.12.011. 
[2] 
P. J. Agrell and P. Bogetoft, Endogenous generalized weights under DEA control, Working Paper 2010/02, Louvain School of Management, Université catholique de Louvain, 2010. 
[3] 
P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (1993), 12611264. doi: 10.1287/mnsc.39.10.1261. 
[4] 
M. Asmild, J. C. Paradi, V. Aggarwal and C. Schaffnit, Combining DEA window analysis with the Malmquist index approach in a study of the Canadian banking industry, Journal of Productivity Analysis, 21 (2004), 6789. doi: 10.1023/B:PROD.0000012453.91326.ec. 
[5] 
E. Bernroider and V. Stix, A method using weight restrictions in data envelopment analysis for ranking and validity issues in decision making, Computers and Operations Research, 34 (2007), 26372647. doi: 10.1016/j.cor.2005.10.005. 
[6] 
P. Bogetoft, Incentive efficient production frontiers: An agency perspective on DEA, Management Science, 40 (1994), 959968. doi: 10.1287/mnsc.40.8.959. 
[7] 
A. Charnes, W. W. Cooper and E. L. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429444. 
[8] 
C. I. Chiang, M. J. Hwang and Y. H. Liu, Determining a common set of weights in a DEA problem using a separation vector, Mathematical and Computer Modelling, 54 (2011), 24642470. doi: 10.1016/j.mcm.2011.06.002. 
[9] 
A. Charnes and W. W. Cooper, Programming with linear fractional functions, Naval Research Logistics Quarterly, 9 (1962), 181186. 
[10] 
A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Polyhedral coneratio DEA models with an illustrative application to large commercial banks, Journal of Econometrics, 40 (1990), 7391. doi: 10.1016/03044076(90)90048X. 
[11] 
A. Charnes, W. W. Cooper, Q. L. Wei and Z. M. Huang, Coneratio data envelopment analysis and multiobjective programming, International Journal of Systems Sciences, 20 (1989), 10991118. doi: 10.1080/00207728908910197. 
[12] 
W. Cook, M. Kress and L. Seiford, Prioritization models for frontier decision making units in DEA, European Journal of Operational Research, 59 (1992), 319323. doi: 10.1016/03772217(92)901483. 
[13] 
D. K. Despotis, Improving the discriminating power of DEA: Focus on globally efficient units, Journal of the Operational Research Society, 53 (2002), 314323. doi: 10.1057/palgrave.jors.2601253. 
[14] 
L. Friedman and Z. SinuanyStern, Scaling units via the canonical correlation analysis in the DEA context, European Journal of Operational Research, 100 (1997), 629637. doi: 10.1016/S03772217(97)841082. 
[15] 
F. HosseinzadehLotfi, A. A. Noora, G. R. Jahanshahloo and M. Reshadi, Short communication: One DEA ranking method based on applying aggregate units, Expert Systems with Applications, 38 (2011), 1346813471. doi: 10.1016/j.eswa.2011.02.145. 
[16] 
G. R. Jahanshahloo, F. HosseinzadehLotfi, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights, Expert Systems with Applications, 37 (2010), 74837488. doi: 10.1016/j.eswa.2010.04.011. 
[17] 
G. R. Jahanshahloo, A. Memariani, F. HosseinzadehLotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common set of weights, Applied Mathematics and Computation, 166 (2005), 265281. doi: 10.1016/j.amc.2004.04.088. 
[18] 
G. R. Jahanshahloo, L. Pourkarimi and M. Zarepisheh, Modified MAJ model for ranking decision making units in data envelopment analysis, Applied Mathematics and Computation, 174 (2006), 10541059. doi: 10.1016/j.amc.2005.06.001. 
[19] 
C. Kao and H. T. Hung, Data envelopment analysis with common weights: The compromise solution approach, Journal of the Operational Research Society, 56 (2005), 11961203. 
[20] 
M. Khalili, A. S. Camanho, M. C. A. S. Portela and M. R. Alirezaee, The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs, European Journal of Operational Research, 203 (2010), 761770. doi: 10.1016/j.ejor.2009.09.002. 
[21] 
S. Li, G. R. Jahanshahloo and M. Khodabakhshi, A superefficiency model for ranking efficient units in data envelopment analysis, Applied Mathematics and Computation, 184 (2007), 638648. doi: 10.1016/j.amc.2006.06.063. 
[22] 
X. B. Li and G. R. Reeves, A multiple criteria approach to data envelopment analysis, European Journal of Operational Research, 115 (1999), 507517. doi: 10.1016/S03772217(98)001301. 
[23] 
F. H. F. Liu and H. H. Peng, Ranking of DMUs on the DEA frontier with common weights, Computers and Operations Research, 35 (2008), 16241637. doi: 10.1016/j.cor.2006.09.006. 
[24] 
F. H. F. Liu and H. H. Peng, A systematic procedure to obtain a preferable and robust ranking of units, Computers and Operations Research, 36 (2009), 360372. 
[25] 
S. Mehrabian, M. R. Alirezaee and G. R. Jahanshahloo, A complete efficiency ranking of decision making units in DEA, Computational Optimization and Applications, 14 (1999), 261266. doi: 10.1023/A:1008703501682. 
[26] 
J. C. Paradi, D. N. Reese and D. Rosen, Applications of DEA to measure the efficiency of software production at two large Canadian banks, Annals of Operations Research, 73 (1997), 91115. doi: 10.1023/A:1018953900977. 
[27] 
N. Ramón, J. L. Ruiz and I. Sirvent, Reducing differences between profiles of weights: A "peerrestricted'' crossefficiency evaluation, Omega, 39 (2011), 634641. doi: 10.1016/j.omega.2011.01.004. 
[28] 
Y. Rool, W. D. Cook and B. Golany, Controlling factor weights in data envelopment analysis, IIE Transactions, 23 (1991), 29. 
[29] 
S. Saati, Determining a common set of weights in DEA by solving a linear programming Journal of Industrial Engineering International, 4 (2008), 5156. 
[30] 
S. Saati and A. Memariani, Reducing weight flexibility in fuzzy DEA, Applied Mathematics and Computation, 161 (2005), 611622. doi: 10.1016/j.amc.2003.12.052. 
[31] 
S. Saati, M. ZarafatAngiz, A. Memariani and G. R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis, Ricerca Operativa, 31 (2001), 4759. 
[32] 
C. S. Sarrico and R. G. Dyson, Restricting virtual weights in data envelopment analysis, European Journal of Operational Research, 159 (2004), 1734. doi: 10.1016/S03772217(03)004028. 
[33] 
T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, in "Measuring Efficiency: An Assessment of Data Envelopment Analysis" (ed. R. H. Silkman), JosseyBass, San Francisco, (1986), 73105. 
[34] 
T. Sueyoshi, DEA nonparametric ranking test and index measurement: Slackadjusted DEA and an application to Japanese agriculture cooperatives, Omega, 27 (1999), 315326. doi: 10.1016/S03050483(98)000577. 
[35] 
R. G. Thompson, P. S. Dharmapala, L. J. Rothenburg and R. M. Thrall, DEA ARs and CRs applied to worldwide major oil companies, Journal of Productivity Analysis, 5 (1994), 181203. 
[36] 
R. G. Thompson, F. Singleton, R. Thrall and B. Smith, Comparative site evaluations for locating a highenergy physics lab in Texas, Interfaces, 16 (1986), 3549. doi: 10.1287/inte.16.6.35. 
[37] 
R. M. Thrall, Duality classification and slacks in data envelopment analysis, Annals of Operation Research, 66 (1996), 109138. doi: 10.1007/BF02187297. 
[38] 
K. Tone, A slacksbased measure of superefficiency in data envelopment analysis, European Journal of Operational Research, 143 (2002), 3241. doi: 10.1016/S03772217(01)003241. 
[39] 
Y.M. Wang and K.S. Chin, Discriminating DEA efficient candidates by considering their least relative total scores, Journal of Computational and Applied Mathematics, 206 (2007), 209215. doi: 10.1016/j.cam.2006.06.012. 
[40] 
Y.M. Wang and K.S. Chin, A neutral DEA model for crossefficiency evaluation and its extension, Expert Systems with Applications, 37 (2010), 36663675. doi: 10.1016/j.eswa.2009.10.024. 
[41] 
Y.M. Wang, Y. Luo and Y.X. Lan, Common weights for fully ranking decision making units by regression analysis, Expert Systems with Applications, 38 (2011), 91229128. doi: 10.1016/j.eswa.2011.01.004. 
[42] 
Y.M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis, Journal of Computational and Applied Mathematics, 223 (2009), 469484. doi: 10.1016/j.cam.2008.01.022. 
show all references
References:
[1] 
P. J. Agrell and P. Bogetoft, Economic and environmental efficiency of district heating plants, Energy Policy, 33 (2005), 13511362. doi: 10.1016/j.enpol.2003.12.011. 
[2] 
P. J. Agrell and P. Bogetoft, Endogenous generalized weights under DEA control, Working Paper 2010/02, Louvain School of Management, Université catholique de Louvain, 2010. 
[3] 
P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (1993), 12611264. doi: 10.1287/mnsc.39.10.1261. 
[4] 
M. Asmild, J. C. Paradi, V. Aggarwal and C. Schaffnit, Combining DEA window analysis with the Malmquist index approach in a study of the Canadian banking industry, Journal of Productivity Analysis, 21 (2004), 6789. doi: 10.1023/B:PROD.0000012453.91326.ec. 
[5] 
E. Bernroider and V. Stix, A method using weight restrictions in data envelopment analysis for ranking and validity issues in decision making, Computers and Operations Research, 34 (2007), 26372647. doi: 10.1016/j.cor.2005.10.005. 
[6] 
P. Bogetoft, Incentive efficient production frontiers: An agency perspective on DEA, Management Science, 40 (1994), 959968. doi: 10.1287/mnsc.40.8.959. 
[7] 
A. Charnes, W. W. Cooper and E. L. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429444. 
[8] 
C. I. Chiang, M. J. Hwang and Y. H. Liu, Determining a common set of weights in a DEA problem using a separation vector, Mathematical and Computer Modelling, 54 (2011), 24642470. doi: 10.1016/j.mcm.2011.06.002. 
[9] 
A. Charnes and W. W. Cooper, Programming with linear fractional functions, Naval Research Logistics Quarterly, 9 (1962), 181186. 
[10] 
A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Polyhedral coneratio DEA models with an illustrative application to large commercial banks, Journal of Econometrics, 40 (1990), 7391. doi: 10.1016/03044076(90)90048X. 
[11] 
A. Charnes, W. W. Cooper, Q. L. Wei and Z. M. Huang, Coneratio data envelopment analysis and multiobjective programming, International Journal of Systems Sciences, 20 (1989), 10991118. doi: 10.1080/00207728908910197. 
[12] 
W. Cook, M. Kress and L. Seiford, Prioritization models for frontier decision making units in DEA, European Journal of Operational Research, 59 (1992), 319323. doi: 10.1016/03772217(92)901483. 
[13] 
D. K. Despotis, Improving the discriminating power of DEA: Focus on globally efficient units, Journal of the Operational Research Society, 53 (2002), 314323. doi: 10.1057/palgrave.jors.2601253. 
[14] 
L. Friedman and Z. SinuanyStern, Scaling units via the canonical correlation analysis in the DEA context, European Journal of Operational Research, 100 (1997), 629637. doi: 10.1016/S03772217(97)841082. 
[15] 
F. HosseinzadehLotfi, A. A. Noora, G. R. Jahanshahloo and M. Reshadi, Short communication: One DEA ranking method based on applying aggregate units, Expert Systems with Applications, 38 (2011), 1346813471. doi: 10.1016/j.eswa.2011.02.145. 
[16] 
G. R. Jahanshahloo, F. HosseinzadehLotfi, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights, Expert Systems with Applications, 37 (2010), 74837488. doi: 10.1016/j.eswa.2010.04.011. 
[17] 
G. R. Jahanshahloo, A. Memariani, F. HosseinzadehLotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common set of weights, Applied Mathematics and Computation, 166 (2005), 265281. doi: 10.1016/j.amc.2004.04.088. 
[18] 
G. R. Jahanshahloo, L. Pourkarimi and M. Zarepisheh, Modified MAJ model for ranking decision making units in data envelopment analysis, Applied Mathematics and Computation, 174 (2006), 10541059. doi: 10.1016/j.amc.2005.06.001. 
[19] 
C. Kao and H. T. Hung, Data envelopment analysis with common weights: The compromise solution approach, Journal of the Operational Research Society, 56 (2005), 11961203. 
[20] 
M. Khalili, A. S. Camanho, M. C. A. S. Portela and M. R. Alirezaee, The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs, European Journal of Operational Research, 203 (2010), 761770. doi: 10.1016/j.ejor.2009.09.002. 
[21] 
S. Li, G. R. Jahanshahloo and M. Khodabakhshi, A superefficiency model for ranking efficient units in data envelopment analysis, Applied Mathematics and Computation, 184 (2007), 638648. doi: 10.1016/j.amc.2006.06.063. 
[22] 
X. B. Li and G. R. Reeves, A multiple criteria approach to data envelopment analysis, European Journal of Operational Research, 115 (1999), 507517. doi: 10.1016/S03772217(98)001301. 
[23] 
F. H. F. Liu and H. H. Peng, Ranking of DMUs on the DEA frontier with common weights, Computers and Operations Research, 35 (2008), 16241637. doi: 10.1016/j.cor.2006.09.006. 
[24] 
F. H. F. Liu and H. H. Peng, A systematic procedure to obtain a preferable and robust ranking of units, Computers and Operations Research, 36 (2009), 360372. 
[25] 
S. Mehrabian, M. R. Alirezaee and G. R. Jahanshahloo, A complete efficiency ranking of decision making units in DEA, Computational Optimization and Applications, 14 (1999), 261266. doi: 10.1023/A:1008703501682. 
[26] 
J. C. Paradi, D. N. Reese and D. Rosen, Applications of DEA to measure the efficiency of software production at two large Canadian banks, Annals of Operations Research, 73 (1997), 91115. doi: 10.1023/A:1018953900977. 
[27] 
N. Ramón, J. L. Ruiz and I. Sirvent, Reducing differences between profiles of weights: A "peerrestricted'' crossefficiency evaluation, Omega, 39 (2011), 634641. doi: 10.1016/j.omega.2011.01.004. 
[28] 
Y. Rool, W. D. Cook and B. Golany, Controlling factor weights in data envelopment analysis, IIE Transactions, 23 (1991), 29. 
[29] 
S. Saati, Determining a common set of weights in DEA by solving a linear programming Journal of Industrial Engineering International, 4 (2008), 5156. 
[30] 
S. Saati and A. Memariani, Reducing weight flexibility in fuzzy DEA, Applied Mathematics and Computation, 161 (2005), 611622. doi: 10.1016/j.amc.2003.12.052. 
[31] 
S. Saati, M. ZarafatAngiz, A. Memariani and G. R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis, Ricerca Operativa, 31 (2001), 4759. 
[32] 
C. S. Sarrico and R. G. Dyson, Restricting virtual weights in data envelopment analysis, European Journal of Operational Research, 159 (2004), 1734. doi: 10.1016/S03772217(03)004028. 
[33] 
T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, in "Measuring Efficiency: An Assessment of Data Envelopment Analysis" (ed. R. H. Silkman), JosseyBass, San Francisco, (1986), 73105. 
[34] 
T. Sueyoshi, DEA nonparametric ranking test and index measurement: Slackadjusted DEA and an application to Japanese agriculture cooperatives, Omega, 27 (1999), 315326. doi: 10.1016/S03050483(98)000577. 
[35] 
R. G. Thompson, P. S. Dharmapala, L. J. Rothenburg and R. M. Thrall, DEA ARs and CRs applied to worldwide major oil companies, Journal of Productivity Analysis, 5 (1994), 181203. 
[36] 
R. G. Thompson, F. Singleton, R. Thrall and B. Smith, Comparative site evaluations for locating a highenergy physics lab in Texas, Interfaces, 16 (1986), 3549. doi: 10.1287/inte.16.6.35. 
[37] 
R. M. Thrall, Duality classification and slacks in data envelopment analysis, Annals of Operation Research, 66 (1996), 109138. doi: 10.1007/BF02187297. 
[38] 
K. Tone, A slacksbased measure of superefficiency in data envelopment analysis, European Journal of Operational Research, 143 (2002), 3241. doi: 10.1016/S03772217(01)003241. 
[39] 
Y.M. Wang and K.S. Chin, Discriminating DEA efficient candidates by considering their least relative total scores, Journal of Computational and Applied Mathematics, 206 (2007), 209215. doi: 10.1016/j.cam.2006.06.012. 
[40] 
Y.M. Wang and K.S. Chin, A neutral DEA model for crossefficiency evaluation and its extension, Expert Systems with Applications, 37 (2010), 36663675. doi: 10.1016/j.eswa.2009.10.024. 
[41] 
Y.M. Wang, Y. Luo and Y.X. Lan, Common weights for fully ranking decision making units by regression analysis, Expert Systems with Applications, 38 (2011), 91229128. doi: 10.1016/j.eswa.2011.01.004. 
[42] 
Y.M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis, Journal of Computational and Applied Mathematics, 223 (2009), 469484. doi: 10.1016/j.cam.2008.01.022. 
[1] 
ChengKai Hu, FungBao Liu, ChengFeng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237249. doi: 10.3934/jimo.2016014 
[2] 
Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 257273. doi: 10.3934/naco.2020001 
[3] 
Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 13111322. doi: 10.3934/jimo.2016.12.1311 
[4] 
Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 13391363. doi: 10.3934/jimo.2021023 
[5] 
Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial and Management Optimization, 2011, 7 (3) : 531558. doi: 10.3934/jimo.2011.7.531 
[6] 
Runqin Hao, Guanwen Zhang, Dong Li, Jie Zhang. Data modeling analysis on removal efficiency of hexavalent chromium. Mathematical Foundations of Computing, 2019, 2 (3) : 203213. doi: 10.3934/mfc.2019014 
[7] 
Mohammad Afzalinejad, Zahra Abbasi. A slacksbased model for dynamic data envelopment analysis. Journal of Industrial and Management Optimization, 2019, 15 (1) : 275291. doi: 10.3934/jimo.2018043 
[8] 
ChengKai Hu, FungBao Liu, HongMing Chen, ChengFeng Hu. Network data envelopment analysis with fuzzy nondiscretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 17951807. doi: 10.3934/jimo.2020046 
[9] 
Hasan HosseiniNasab, Vahid Ettehadi. Development of openednetwork data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022027 
[10] 
Pooja Bansal. Sequential MalmquistLuenberger productivity index for interval data envelopment analysis. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022058 
[11] 
Gholam Hassan Shirdel, Somayeh RamezaniTarkhorani. A new method for ranking decision making units using common set of weights: A developed criterion. Journal of Industrial and Management Optimization, 2020, 16 (2) : 633651. doi: 10.3934/jimo.2018171 
[12] 
Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in setvalued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427436. doi: 10.3934/eect.2017022 
[13] 
Ali Hadi, Saeid Mehrabian. A twostage data envelopment analysis approach to solve extended transportation problem with nonhomogenous costs. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022006 
[14] 
Yihong Xu, Zhenhua Peng. Higherorder sensitivity analysis in setvalued optimization under Henig efficiency. Journal of Industrial and Management Optimization, 2017, 13 (1) : 313327. doi: 10.3934/jimo.2016019 
[15] 
Angela Cadena, Adriana Marcucci, Juan F. Pérez, Hernando Durán, Hernando Mutis, Camilo Taútiva, Fernando Palacios. Efficiency analysis in electricity transmission utilities. Journal of Industrial and Management Optimization, 2009, 5 (2) : 253274. doi: 10.3934/jimo.2009.5.253 
[16] 
Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private setintersection with common setup. Advances in Mathematics of Communications, 2018, 12 (1) : 1747. doi: 10.3934/amc.2018002 
[17] 
Kimberly Fessel, Jeffrey B. Gaither, Julie K. Bower, Trudy Gaillard, Kwame Osei, Grzegorz A. Rempała. Mathematical analysis of a model for glucose regulation. Mathematical Biosciences & Engineering, 2016, 13 (1) : 8399. doi: 10.3934/mbe.2016.13.83 
[18] 
Pablo AnguloArdoy. On the set of metrics without local limiting Carleman weights. Inverse Problems and Imaging, 2017, 11 (1) : 4764. doi: 10.3934/ipi.2017003 
[19] 
ChengFeng Hu, HsiaoFan Wang, Tingyang Liu. Measuring efficiency of a recycling production system with imprecise data. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 7991. doi: 10.3934/naco.2021052 
[20] 
Wu Chanti, Qiu Youzhen. A nonlinear empirical analysis on influence factor of circulation efficiency. Discrete and Continuous Dynamical Systems  S, 2019, 12 (4&5) : 929940. doi: 10.3934/dcdss.2019062 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]