July  2012, 8(3): 623-637. doi: 10.3934/jimo.2012.8.623

A common set of weight approach using an ideal decision making unit in data envelopment analysis

1. 

Department of Mathematics, Tehran-North Branch, Islamic Azad University, P.O. Box 19585-936, Tehran, Iran

2. 

Louvain School of Management, Center of Operations Research and Econometrics (CORE), Université catholique de Louvain, L1.03.01, B-1348 Louvain-la-Neuve, Belgium, Belgium

3. 

Management Information Systems, Lindback Distinguished Chair of Information Systems, La Salle University, Philadelphia, PA19141, United States

Received  September 2011 Revised  January 2012 Published  June 2012

Data envelopment analysis (DEA) is a common non-parametric frontier analysis method. The multiplier framework of DEA allows flexibility in the selection of endogenous input and output weights of decision making units (DMUs) as to cautiously measure their efficiency. The calculation of DEA scores requires the solution of one linear program per DMU and generates an individual set of endogenous weights (multipliers) for each performance dimension. Given the large number of DMUs in real applications, the computational and conceptual complexities are considerable with weights that are potentially zero-valued or incommensurable across units. In this paper, we propose a two-phase algorithm to address these two problems. In the first step, we define an ideal DMU (IDMU) which is a hypothetical DMU consuming the least inputs to secure the most outputs. In the second step, we use the IDMU in a LP model with a small number of constraints to determine a common set of weights (CSW). In the final step of the process, we calculate the efficiency of the DMUs with the obtained CSW. The proposed model is applied to a numerical example and to a case study using panel data from 286 Danish district heating plants to illustrate the applicability of the proposed method.
Citation: Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial & Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623
References:
[1]

P. J. Agrell and P. Bogetoft, Economic and environmental efficiency of district heating plants,, Energy Policy, 33 (2005), 1351.  doi: 10.1016/j.enpol.2003.12.011.  Google Scholar

[2]

P. J. Agrell and P. Bogetoft, Endogenous generalized weights under DEA control,, Working Paper 2010/02, (2010).   Google Scholar

[3]

P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis,, Management Science, 39 (1993), 1261.  doi: 10.1287/mnsc.39.10.1261.  Google Scholar

[4]

M. Asmild, J. C. Paradi, V. Aggarwal and C. Schaffnit, Combining DEA window analysis with the Malmquist index approach in a study of the Canadian banking industry,, Journal of Productivity Analysis, 21 (2004), 67.  doi: 10.1023/B:PROD.0000012453.91326.ec.  Google Scholar

[5]

E. Bernroider and V. Stix, A method using weight restrictions in data envelopment analysis for ranking and validity issues in decision making,, Computers and Operations Research, 34 (2007), 2637.  doi: 10.1016/j.cor.2005.10.005.  Google Scholar

[6]

P. Bogetoft, Incentive efficient production frontiers: An agency perspective on DEA,, Management Science, 40 (1994), 959.  doi: 10.1287/mnsc.40.8.959.  Google Scholar

[7]

A. Charnes, W. W. Cooper and E. L. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.   Google Scholar

[8]

C. I. Chiang, M. J. Hwang and Y. H. Liu, Determining a common set of weights in a DEA problem using a separation vector,, Mathematical and Computer Modelling, 54 (2011), 2464.  doi: 10.1016/j.mcm.2011.06.002.  Google Scholar

[9]

A. Charnes and W. W. Cooper, Programming with linear fractional functions,, Naval Research Logistics Quarterly, 9 (1962), 181.   Google Scholar

[10]

A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks,, Journal of Econometrics, 40 (1990), 73.  doi: 10.1016/0304-4076(90)90048-X.  Google Scholar

[11]

A. Charnes, W. W. Cooper, Q. L. Wei and Z. M. Huang, Cone-ratio data envelopment analysis and multi-objective programming,, International Journal of Systems Sciences, 20 (1989), 1099.  doi: 10.1080/00207728908910197.  Google Scholar

[12]

W. Cook, M. Kress and L. Seiford, Prioritization models for frontier decision making units in DEA,, European Journal of Operational Research, 59 (1992), 319.  doi: 10.1016/0377-2217(92)90148-3.  Google Scholar

[13]

D. K. Despotis, Improving the discriminating power of DEA: Focus on globally efficient units,, Journal of the Operational Research Society, 53 (2002), 314.  doi: 10.1057/palgrave.jors.2601253.  Google Scholar

[14]

L. Friedman and Z. Sinuany-Stern, Scaling units via the canonical correlation analysis in the DEA context,, European Journal of Operational Research, 100 (1997), 629.  doi: 10.1016/S0377-2217(97)84108-2.  Google Scholar

[15]

F. HosseinzadehLotfi, A. A. Noora, G. R. Jahanshahloo and M. Reshadi, Short communication: One DEA ranking method based on applying aggregate units,, Expert Systems with Applications, 38 (2011), 13468.  doi: 10.1016/j.eswa.2011.02.145.  Google Scholar

[16]

G. R. Jahanshahloo, F. HosseinzadehLotfi, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights,, Expert Systems with Applications, 37 (2010), 7483.  doi: 10.1016/j.eswa.2010.04.011.  Google Scholar

[17]

G. R. Jahanshahloo, A. Memariani, F. HosseinzadehLotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common set of weights,, Applied Mathematics and Computation, 166 (2005), 265.  doi: 10.1016/j.amc.2004.04.088.  Google Scholar

[18]

G. R. Jahanshahloo, L. Pourkarimi and M. Zarepisheh, Modified MAJ model for ranking decision making units in data envelopment analysis,, Applied Mathematics and Computation, 174 (2006), 1054.  doi: 10.1016/j.amc.2005.06.001.  Google Scholar

[19]

C. Kao and H. T. Hung, Data envelopment analysis with common weights: The compromise solution approach,, Journal of the Operational Research Society, 56 (2005), 1196.   Google Scholar

[20]

M. Khalili, A. S. Camanho, M. C. A. S. Portela and M. R. Alirezaee, The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs,, European Journal of Operational Research, 203 (2010), 761.  doi: 10.1016/j.ejor.2009.09.002.  Google Scholar

[21]

S. Li, G. R. Jahanshahloo and M. Khodabakhshi, A super-efficiency model for ranking efficient units in data envelopment analysis,, Applied Mathematics and Computation, 184 (2007), 638.  doi: 10.1016/j.amc.2006.06.063.  Google Scholar

[22]

X. B. Li and G. R. Reeves, A multiple criteria approach to data envelopment analysis,, European Journal of Operational Research, 115 (1999), 507.  doi: 10.1016/S0377-2217(98)00130-1.  Google Scholar

[23]

F. H. F. Liu and H. H. Peng, Ranking of DMUs on the DEA frontier with common weights,, Computers and Operations Research, 35 (2008), 1624.  doi: 10.1016/j.cor.2006.09.006.  Google Scholar

[24]

F. H. F. Liu and H. H. Peng, A systematic procedure to obtain a preferable and robust ranking of units,, Computers and Operations Research, 36 (2009), 360.   Google Scholar

[25]

S. Mehrabian, M. R. Alirezaee and G. R. Jahanshahloo, A complete efficiency ranking of decision making units in DEA,, Computational Optimization and Applications, 14 (1999), 261.  doi: 10.1023/A:1008703501682.  Google Scholar

[26]

J. C. Paradi, D. N. Reese and D. Rosen, Applications of DEA to measure the efficiency of software production at two large Canadian banks,, Annals of Operations Research, 73 (1997), 91.  doi: 10.1023/A:1018953900977.  Google Scholar

[27]

N. Ramón, J. L. Ruiz and I. Sirvent, Reducing differences between profiles of weights: A "peer-restricted'' cross-efficiency evaluation,, Omega, 39 (2011), 634.  doi: 10.1016/j.omega.2011.01.004.  Google Scholar

[28]

Y. Rool, W. D. Cook and B. Golany, Controlling factor weights in data envelopment analysis,, IIE Transactions, 23 (1991), 2.   Google Scholar

[29]

S. Saati, Determining a common set of weights in DEA by solving a linear programming, Journal of Industrial Engineering International, 4 (2008), 51.   Google Scholar

[30]

S. Saati and A. Memariani, Reducing weight flexibility in fuzzy DEA,, Applied Mathematics and Computation, 161 (2005), 611.  doi: 10.1016/j.amc.2003.12.052.  Google Scholar

[31]

S. Saati, M. ZarafatAngiz, A. Memariani and G. R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis,, Ricerca Operativa, 31 (2001), 47.   Google Scholar

[32]

C. S. Sarrico and R. G. Dyson, Restricting virtual weights in data envelopment analysis,, European Journal of Operational Research, 159 (2004), 17.  doi: 10.1016/S0377-2217(03)00402-8.  Google Scholar

[33]

T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, in "Measuring Efficiency: An Assessment of Data Envelopment Analysis" (ed. R. H. Silkman),, Jossey-Bass, (1986), 73.   Google Scholar

[34]

T. Sueyoshi, DEA nonparametric ranking test and index measurement: Slack-adjusted DEA and an application to Japanese agriculture cooperatives,, Omega, 27 (1999), 315.  doi: 10.1016/S0305-0483(98)00057-7.  Google Scholar

[35]

R. G. Thompson, P. S. Dharmapala, L. J. Rothenburg and R. M. Thrall, DEA ARs and CRs applied to worldwide major oil companies,, Journal of Productivity Analysis, 5 (1994), 181.   Google Scholar

[36]

R. G. Thompson, F. Singleton, R. Thrall and B. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas,, Interfaces, 16 (1986), 35.  doi: 10.1287/inte.16.6.35.  Google Scholar

[37]

R. M. Thrall, Duality classification and slacks in data envelopment analysis,, Annals of Operation Research, 66 (1996), 109.  doi: 10.1007/BF02187297.  Google Scholar

[38]

K. Tone, A slacks-based measure of super-efficiency in data envelopment analysis,, European Journal of Operational Research, 143 (2002), 32.  doi: 10.1016/S0377-2217(01)00324-1.  Google Scholar

[39]

Y.-M. Wang and K.-S. Chin, Discriminating DEA efficient candidates by considering their least relative total scores,, Journal of Computational and Applied Mathematics, 206 (2007), 209.  doi: 10.1016/j.cam.2006.06.012.  Google Scholar

[40]

Y.-M. Wang and K.-S. Chin, A neutral DEA model for cross-efficiency evaluation and its extension,, Expert Systems with Applications, 37 (2010), 3666.  doi: 10.1016/j.eswa.2009.10.024.  Google Scholar

[41]

Y.-M. Wang, Y. Luo and Y.-X. Lan, Common weights for fully ranking decision making units by regression analysis,, Expert Systems with Applications, 38 (2011), 9122.  doi: 10.1016/j.eswa.2011.01.004.  Google Scholar

[42]

Y.-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis,, Journal of Computational and Applied Mathematics, 223 (2009), 469.  doi: 10.1016/j.cam.2008.01.022.  Google Scholar

show all references

References:
[1]

P. J. Agrell and P. Bogetoft, Economic and environmental efficiency of district heating plants,, Energy Policy, 33 (2005), 1351.  doi: 10.1016/j.enpol.2003.12.011.  Google Scholar

[2]

P. J. Agrell and P. Bogetoft, Endogenous generalized weights under DEA control,, Working Paper 2010/02, (2010).   Google Scholar

[3]

P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis,, Management Science, 39 (1993), 1261.  doi: 10.1287/mnsc.39.10.1261.  Google Scholar

[4]

M. Asmild, J. C. Paradi, V. Aggarwal and C. Schaffnit, Combining DEA window analysis with the Malmquist index approach in a study of the Canadian banking industry,, Journal of Productivity Analysis, 21 (2004), 67.  doi: 10.1023/B:PROD.0000012453.91326.ec.  Google Scholar

[5]

E. Bernroider and V. Stix, A method using weight restrictions in data envelopment analysis for ranking and validity issues in decision making,, Computers and Operations Research, 34 (2007), 2637.  doi: 10.1016/j.cor.2005.10.005.  Google Scholar

[6]

P. Bogetoft, Incentive efficient production frontiers: An agency perspective on DEA,, Management Science, 40 (1994), 959.  doi: 10.1287/mnsc.40.8.959.  Google Scholar

[7]

A. Charnes, W. W. Cooper and E. L. Rhodes, Measuring the efficiency of decision making units,, European Journal of Operational Research, 2 (1978), 429.   Google Scholar

[8]

C. I. Chiang, M. J. Hwang and Y. H. Liu, Determining a common set of weights in a DEA problem using a separation vector,, Mathematical and Computer Modelling, 54 (2011), 2464.  doi: 10.1016/j.mcm.2011.06.002.  Google Scholar

[9]

A. Charnes and W. W. Cooper, Programming with linear fractional functions,, Naval Research Logistics Quarterly, 9 (1962), 181.   Google Scholar

[10]

A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks,, Journal of Econometrics, 40 (1990), 73.  doi: 10.1016/0304-4076(90)90048-X.  Google Scholar

[11]

A. Charnes, W. W. Cooper, Q. L. Wei and Z. M. Huang, Cone-ratio data envelopment analysis and multi-objective programming,, International Journal of Systems Sciences, 20 (1989), 1099.  doi: 10.1080/00207728908910197.  Google Scholar

[12]

W. Cook, M. Kress and L. Seiford, Prioritization models for frontier decision making units in DEA,, European Journal of Operational Research, 59 (1992), 319.  doi: 10.1016/0377-2217(92)90148-3.  Google Scholar

[13]

D. K. Despotis, Improving the discriminating power of DEA: Focus on globally efficient units,, Journal of the Operational Research Society, 53 (2002), 314.  doi: 10.1057/palgrave.jors.2601253.  Google Scholar

[14]

L. Friedman and Z. Sinuany-Stern, Scaling units via the canonical correlation analysis in the DEA context,, European Journal of Operational Research, 100 (1997), 629.  doi: 10.1016/S0377-2217(97)84108-2.  Google Scholar

[15]

F. HosseinzadehLotfi, A. A. Noora, G. R. Jahanshahloo and M. Reshadi, Short communication: One DEA ranking method based on applying aggregate units,, Expert Systems with Applications, 38 (2011), 13468.  doi: 10.1016/j.eswa.2011.02.145.  Google Scholar

[16]

G. R. Jahanshahloo, F. HosseinzadehLotfi, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights,, Expert Systems with Applications, 37 (2010), 7483.  doi: 10.1016/j.eswa.2010.04.011.  Google Scholar

[17]

G. R. Jahanshahloo, A. Memariani, F. HosseinzadehLotfi and H. Z. Rezai, A note on some of DEA models and finding efficiency and complete ranking using common set of weights,, Applied Mathematics and Computation, 166 (2005), 265.  doi: 10.1016/j.amc.2004.04.088.  Google Scholar

[18]

G. R. Jahanshahloo, L. Pourkarimi and M. Zarepisheh, Modified MAJ model for ranking decision making units in data envelopment analysis,, Applied Mathematics and Computation, 174 (2006), 1054.  doi: 10.1016/j.amc.2005.06.001.  Google Scholar

[19]

C. Kao and H. T. Hung, Data envelopment analysis with common weights: The compromise solution approach,, Journal of the Operational Research Society, 56 (2005), 1196.   Google Scholar

[20]

M. Khalili, A. S. Camanho, M. C. A. S. Portela and M. R. Alirezaee, The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs,, European Journal of Operational Research, 203 (2010), 761.  doi: 10.1016/j.ejor.2009.09.002.  Google Scholar

[21]

S. Li, G. R. Jahanshahloo and M. Khodabakhshi, A super-efficiency model for ranking efficient units in data envelopment analysis,, Applied Mathematics and Computation, 184 (2007), 638.  doi: 10.1016/j.amc.2006.06.063.  Google Scholar

[22]

X. B. Li and G. R. Reeves, A multiple criteria approach to data envelopment analysis,, European Journal of Operational Research, 115 (1999), 507.  doi: 10.1016/S0377-2217(98)00130-1.  Google Scholar

[23]

F. H. F. Liu and H. H. Peng, Ranking of DMUs on the DEA frontier with common weights,, Computers and Operations Research, 35 (2008), 1624.  doi: 10.1016/j.cor.2006.09.006.  Google Scholar

[24]

F. H. F. Liu and H. H. Peng, A systematic procedure to obtain a preferable and robust ranking of units,, Computers and Operations Research, 36 (2009), 360.   Google Scholar

[25]

S. Mehrabian, M. R. Alirezaee and G. R. Jahanshahloo, A complete efficiency ranking of decision making units in DEA,, Computational Optimization and Applications, 14 (1999), 261.  doi: 10.1023/A:1008703501682.  Google Scholar

[26]

J. C. Paradi, D. N. Reese and D. Rosen, Applications of DEA to measure the efficiency of software production at two large Canadian banks,, Annals of Operations Research, 73 (1997), 91.  doi: 10.1023/A:1018953900977.  Google Scholar

[27]

N. Ramón, J. L. Ruiz and I. Sirvent, Reducing differences between profiles of weights: A "peer-restricted'' cross-efficiency evaluation,, Omega, 39 (2011), 634.  doi: 10.1016/j.omega.2011.01.004.  Google Scholar

[28]

Y. Rool, W. D. Cook and B. Golany, Controlling factor weights in data envelopment analysis,, IIE Transactions, 23 (1991), 2.   Google Scholar

[29]

S. Saati, Determining a common set of weights in DEA by solving a linear programming, Journal of Industrial Engineering International, 4 (2008), 51.   Google Scholar

[30]

S. Saati and A. Memariani, Reducing weight flexibility in fuzzy DEA,, Applied Mathematics and Computation, 161 (2005), 611.  doi: 10.1016/j.amc.2003.12.052.  Google Scholar

[31]

S. Saati, M. ZarafatAngiz, A. Memariani and G. R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis,, Ricerca Operativa, 31 (2001), 47.   Google Scholar

[32]

C. S. Sarrico and R. G. Dyson, Restricting virtual weights in data envelopment analysis,, European Journal of Operational Research, 159 (2004), 17.  doi: 10.1016/S0377-2217(03)00402-8.  Google Scholar

[33]

T. R. Sexton, R. H. Silkman and A. J. Hogan, Data envelopment analysis: Critique and extensions, in "Measuring Efficiency: An Assessment of Data Envelopment Analysis" (ed. R. H. Silkman),, Jossey-Bass, (1986), 73.   Google Scholar

[34]

T. Sueyoshi, DEA nonparametric ranking test and index measurement: Slack-adjusted DEA and an application to Japanese agriculture cooperatives,, Omega, 27 (1999), 315.  doi: 10.1016/S0305-0483(98)00057-7.  Google Scholar

[35]

R. G. Thompson, P. S. Dharmapala, L. J. Rothenburg and R. M. Thrall, DEA ARs and CRs applied to worldwide major oil companies,, Journal of Productivity Analysis, 5 (1994), 181.   Google Scholar

[36]

R. G. Thompson, F. Singleton, R. Thrall and B. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas,, Interfaces, 16 (1986), 35.  doi: 10.1287/inte.16.6.35.  Google Scholar

[37]

R. M. Thrall, Duality classification and slacks in data envelopment analysis,, Annals of Operation Research, 66 (1996), 109.  doi: 10.1007/BF02187297.  Google Scholar

[38]

K. Tone, A slacks-based measure of super-efficiency in data envelopment analysis,, European Journal of Operational Research, 143 (2002), 32.  doi: 10.1016/S0377-2217(01)00324-1.  Google Scholar

[39]

Y.-M. Wang and K.-S. Chin, Discriminating DEA efficient candidates by considering their least relative total scores,, Journal of Computational and Applied Mathematics, 206 (2007), 209.  doi: 10.1016/j.cam.2006.06.012.  Google Scholar

[40]

Y.-M. Wang and K.-S. Chin, A neutral DEA model for cross-efficiency evaluation and its extension,, Expert Systems with Applications, 37 (2010), 3666.  doi: 10.1016/j.eswa.2009.10.024.  Google Scholar

[41]

Y.-M. Wang, Y. Luo and Y.-X. Lan, Common weights for fully ranking decision making units by regression analysis,, Expert Systems with Applications, 38 (2011), 9122.  doi: 10.1016/j.eswa.2011.01.004.  Google Scholar

[42]

Y.-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis,, Journal of Computational and Applied Mathematics, 223 (2009), 469.  doi: 10.1016/j.cam.2008.01.022.  Google Scholar

[1]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[2]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[3]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[4]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[5]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[6]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[7]

Sohana Jahan. Discriminant analysis of regularized multidimensional scaling. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 255-267. doi: 10.3934/naco.2020024

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[10]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[13]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[14]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[15]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[16]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[17]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[18]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (18)

[Back to Top]