Advanced Search
Article Contents
Article Contents

Integrated inventory model with stochastic lead time and controllable variability for milk runs

Abstract Related Papers Cited by
  • The current study deals with the lead-time variability reduction problem in a multi-supplier and single-buyer system with a milk-run delivery network. Under the assumption of finite-range stochastic lead time, we consider that the lead-time variance can be shortened at an extra crashing cost. Aiming to minimize the joint system costs, an integrated inventory model is formulated with a capacity constraint, and a solution procedure is developed to simultaneously optimize lead-time variance, replenishment cycle time, reorder point, and the integer numbers of shipment per production cycle for multiple suppliers. We also show that the buyer does a tradeoff between the crashing cost and the sum of holding and shortage costs for the decision making of the optimal lead-time variability. Numerical examples and sensitivity analysis are presented to validate the proposed model.
    Mathematics Subject Classification: Primary: 90B05, 90B15; Secondary: 90C90.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Ben-Daya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time, International Journal of Production Economics, 92 (2004), 75-80.doi: 10.1016/j.ijpe.2003.09.012.


    H. Chang, L. Ouyang, K. Wu and C. Ho, Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction, European Journal of Operational Research, 170 (2006), 481-495.doi: 10.1016/j.ejor.2004.06.029.


    J. M. Chen and T. Chen, The multi-item replenishment problem in a two-echelon supply chain: the effect of centralization versus decentralization, Computers and Operations Research, 32 (2005), 3191-3207.doi: 10.1016/j.cor.2004.05.007.


    S. Chopra, G. Reinhardt and M. Dada, The effect of lead time uncertainty on safety stocks, Decision Sciences, 35 (2004), 1-24.doi: 10.1111/j.1540-5414.2004.02332.x.


    C. F. Daganzo, The distance traveled to visit N points with a maximum of C stops per vehicle: An analytic model and an application, Transportation Science, 18 (1984), 331-350.doi: 10.1287/trsc.18.4.331.


    T. Du, F. K. Wang and P. Lu, A real-time vehicle-dispatching system for consolidating milk runs, Transportation Research, 43 (2007), 565-577.doi: 10.1016/j.tre.2006.03.001.


    Y. Gerchak and M. Parlar, Investing in reducing lead-time randomness in continuous-review inventory models, Engineering Costs and Production Economics, 21 (1991), 191-197.doi: 10.1016/0167-188X(91)90032-W.


    C. H. Glock, A comment: "Integrated single vendor-single buyer model with stochastic demand and variable lead time," International Journal of Production Research, 122 (2009), 790-792.doi: 10.1016/j.ijpe.2009.06.032.


    C. H. Glock, The joint economic lot size problem: A review, International Journal of Production Economics, 135 (2012), 671-686.doi: 10.1016/j.ijpe.2011.10.026.


    S. K. Goyal, A joint economic-lot-size model for purchaser and vendor: A comment, Decision Sciences, 19 (1988), 236-241.doi: 10.1111/j.1540-5915.1988.tb00264.x.


    M. G. Guler and T. Bilgic, On coordinating an assembly system under random yield and random demand, European Journal of Operational Research, 196 (2009), 342-350.doi: 10.1016/j.ejor.2008.03.002.


    M. Hariga and M. Ben-Daya, Some stochastic inventory models with deterministic variable lead time, European Journal of Operational Research, 113 (1999), 42-51.doi: 10.1016/S0377-2217(97)00441-4.


    X. J. He, J. G. Kim and C. H. Jack, The cost of lead-time variability: The case of the exponential distribution, International Journal of Production Economics, 97 (2005), 113-122.doi: 10.1016/j.ijpe.2004.05.007.


    R. M. Hill, The optimal production and shipment policy for the single-vendor single-buyer integrated production-inventory problem, International Journal of Production Research, 37 (1999), 2463-2475.doi: 10.1080/002075499190617.


    M. A. Hoque and S. K. Goyal, An optimal policy for a single-vendor single-buyer integrated production-inventory system with capacity constraint of the transportation equipment, International Journal of Production Economics, 65 (2000), 305-315.doi: 10.1016/S0925-5273(99)00082-1.


    P. N. Joglekar, Comments on: A quantity discount pricing model to increase vendor profits, Management Science, 34 (1988), 1391-1398.doi: 10.1287/mnsc.34.11.1391.


    C. J. Liao and C. H. Shyu, An analytical determination of lead time with normal demand, International Journal of Operations and Production Management, 11 (1991), 72-78.doi: 10.1108/EUM0000000001287.


    M. J. Liberatore, Planning Horizons for a stochastic lead-time inventory model, Operations Research, 26 (1977), 927-988.


    A. K. Maiti, M. K. Maiti and M. Maiti, Inventory model with stochastic lead-time and price dependent demand incorporating advance payment, Applied Mathematical Modeling, 33 (2009), 2433-2443.doi: 10.1016/j.apm.2008.07.024.


    B. F. Moghadam and S. M. Seyedhosseini, A particle swarm approach to solve vehicle routing problem with uncertain demand: A drug distribution case study, International Journal of Industrial Engineering Computations, 1 (2010), 55-66.


    L.-Y. Ouyang and H.-C. Chang, Lot size reorder point inventory model with controllable lead time and set-up cost, International Journal of Systems Science, 33 (2002), 635-642.doi: 10.1080/00207720210136685.


    M. J. Paknejad, F. Nasri and J. F. Affisco, Lead-time variability reduction in stochastic inventory models, European Journal of Operational Research, 62 (1992), 311-322.doi: 10.1016/0377-2217(92)90121-O.


    M. J. Paknejad, F. Nasri and J. F. Affisco, Quality improvement in an inventory model with finite-range stochastic lead times, Journal of Applied Mathematics and Decision Sciences, 3 (2005), 177-189.


    J. C. Pan and J. S. Yang, A study of an integrated inventory with controllable lead time, International Journal of Production Research, 40 (2002), 1263-1273.doi: 10.1080/00207540110105680.


    S. Sadjadi, M. Jafari and T. Amini, A new mathematical modeling and a genetic algorithm search for milk run problem (an auto industry supply chain case study), International Journal of Advanced Manufacturing Technology, 44 (2009), 194-200.doi: 10.1007/s00170-008-1648-5.


    G. P. Sphicas and F. Nasri, An inventory model with finite-range stochastic lead times, Naval Research Logistics, 31 (1984), 609-616.doi: 10.1002/nav.3800310410.


    J. C. Yu, H. M. Wee and K. J. Wang, Supply chain partnership for three-echelon deteriorating inventory model, Journal of Industrial and Management Optimization, 4 (2008), 827-842.

  • 加载中

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint