\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global and global linear convergence of smoothing algorithm for the Cartesian $P_*(\kappa)$-SCLCP

Abstract Related Papers Cited by
  • In this paper, we consider the linear complementarity problem over Euclidean Jordan algebras with a Cartesian $P_*(\kappa)$-transformation, which is denoted by the Cartesian $P_*(\kappa)$-SCLCP. A smoothing algorithm is extended to solve the Cartesian $P_*(\kappa)$-SCLCP. We show that the algorithm is globally convergent if the problem concerned has a solution. In particular, we show that the algorithm is globally linearly convergent under a weak assumption.
    Mathematics Subject Classification: Primary: 90C22, 90C25; Secondary: 90C33.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. W. Cottle, J.-S. Pang and R. E. Stone, "The Linear Complementarity Problems," Academic Press, Boston, 1992.

    [2]

    J. Faraut and A. Korányi, "Analysis on Symmetric Cones, Oxford Mathematical Monographs," Oxford University Press, New York, 1994.

    [3]

    L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity, 1 (1997), 331-357.

    [4]

    L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. Appl. Math., 86 (1997), 149-175.

    [5]

    L. Faybusovich and Y. Lu, Jordan-algebraic aspects of nonconvex optimization over symmetric cones, Appl. Math. Optim., 53 (2006), 67-77.

    [6]

    M. S. Gowda, R. Sznajder and J. Tao, Some $P$-properties for linear transformations on Euclidean Jordan algebras, Linear Algebra Appl., 393 (2004), 203-232.

    [7]

    Z. H. Huang, The global linear and local quadratic convergence of a non-interior continuation algorithm for the LCP, IMA J. Numer. Anal., 25 (2005), 670-684.

    [8]

    Z. H. Huang, Locating a maximally complementary solution of the monotone NCP by using non-interior-point smoothing algorithms, Math. Meth. Oper. Res., 61 (2005), 41-55.

    [9]

    Z. H. Huang, S. L. Hu and J. Han, Global convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search, Sci. China, Ser. A, 52 (2009), 833-848.

    [10]

    Z. H. Huang and T. Ni, Smoothing algorithms for complementarity problems over symmetric cones, Comput. Optim. Appl., 45 (2010), 557-579.

    [11]

    Z. H. Huang, L. Qi and D. Sun, Sub-quadratic convergence of a smoothing Newton algorithm for the $P_0$- and monotone LCP, Math. Program., 99 (2004), 423-441.

    [12]

    Z. H. Huang and J. Sun, A non-interior continuation algorithm for the $P_0$ or $P_*$ LCP with strong global and local convergence properties, Appl. Math. Optim., 52 (2005), 237-262.

    [13]

    Z. H. Huang and S. W. Xu, Convergence properties of a non-interior-point smoothing algorithm for the $P_*$ NCP, J. Ind. Manag. Optim., 3 (2007), 569-584.

    [14]

    M. Kojima, N. Megiddo, T. Noma and A. Yoshise, "A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems," Lecture Note in Computer Science, 538, Springer, New York, 1991.

    [15]

    L. C. Kong, J. Sun and N. H. Xiu, A regularized smoothing Newton method for symmetric cone complementarity problems, SIAM J. Optim., 19 (2008), 1028-1047.

    [16]

    L. C. Kong, L. Tunçel and N. H. Xiu, Fischer-Burmeister conplementarity function on Euclidean Jordan algebras, Pacific J. Optim., 6 (2010), 423-440.

    [17]

    X. H. Liu and Z. H. Huang, A smoothing Newton algorithm based on a one-parametric class of smoothing functions for linear programming over symmetric cones, Math. Meth. Oper. Res., 70 (2009), 385-404.

    [18]

    Y. J. Liu, L. W. Zhang and Y. H. Wang, Analysis of smoothing method for symmetric conic linear programming, J. Appl. Math. Comput., 22 (2006), 133-148.

    [19]

    Z. Y. Luo and N. H. Xiu, Path-following interior point algorithms for the Cartesian $P_*(\kappa)$-LCP over symmetric cones, Sci. China, Ser. A, 52 (2009), 1769-1784.

    [20]

    S. H. Pan and J. S. Chen, A one-parametric class of merit functions for the symmetric cone complementarity problem, J. Math. Anal. Appl., 355 (2009), 195-215.

    [21]

    S. H. Pan and J. S. Chen, A regularization method for the second-order cone complementarity problem with the Cartesian $P_0$-property, Nonlinear Anal. - TMA, 70 (2009), 1475-1491.

    [22]

    L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems, Math. Program., 87 (2000), 1-35.

    [23]

    S. H. Schimieta and F. Alizadeh, Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones, Math. Oper. Res., 26 (2001), 543-564.

    [24]

    S. H. Schimieta and F. Alizadeh, Extension of primal-dual interior-point algorithms to symmetric cones, Math. Program., 96 (2003), 409-438.

    [25]

    H. Völiaho, $P_*(\kappa)$-matrices are just sufficient, Linear Algebra Appl., 239 (1996), 103-108.

    [26]

    A. Yoshise, Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones, SIAM J. Optim., 17 (2006), 1129-1153.

    [27]

    Y. B. Zhao and D. Li, A globally and locally superlinearly convergent non-interior-point algorithm for $P_0$ LCPs, SIAM J Optim., 13 (2003), 1196-1221.

    [28]

    Y. B. Zhao and D. Li, A new path-following algorithm for nonlinear $P_*$ complementarity problems, Comput. Optim. Appl., 34 (2005), 183-214.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(60) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return