• Previous Article
    Upper Hölder estimates of solutions to parametric primal and dual vector quasi-equilibria
  • JIMO Home
  • This Issue
  • Next Article
    Integrated inventory model with stochastic lead time and controllable variability for milk runs
July  2012, 8(3): 673-690. doi: 10.3934/jimo.2012.8.673

Optimal reinsurance-investment strategies for insurers under mean-CaR criteria

1. 

Lingnan (University) College, Sun Yat-sen University, Guangzhou 510275, China

2. 

Lingnan (University) College/Sun Yat-sen Business School, Sun Yat-sen University, Guangzhou 510275, China

Received  June 2011 Revised  February 2012 Published  June 2012

This paper considers an optimal reinsurance-investment problem for an insurer, who aims to minimize the risk measured by Capital-at-Risk (CaR) with the constraint that the expected terminal wealth is not less than a predefined level. The surplus of the insurer is described by a Brownian motion with drift. The insurer can control her/his risk by purchasing proportional reinsurance, acquiring new business, and investing her/his surplus in a financial market consisting of one risk-free asset and multiple risky assets. Three mean-CaR models are constructed. By transforming these models into bilevel optimization problems, we derive the explicit expressions of the optimal deterministic rebalance reinsurance-investment strategies and the mean-CaR efficient frontiers. Sensitivity analysis of the results and a numerical example are provided.
Citation: Yan Zeng, Zhongfei Li. Optimal reinsurance-investment strategies for insurers under mean-CaR criteria. Journal of Industrial & Management Optimization, 2012, 8 (3) : 673-690. doi: 10.3934/jimo.2012.8.673
References:
[1]

S. Asmussen, B. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation,, Finance and Stochastics, 4 (2000), 299.   Google Scholar

[2]

P. Azcue and N. Muler, Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints,, Insurance: Mathematics and Economics, 44 (2009), 26.  doi: 10.1016/j.insmatheco.2008.09.006.  Google Scholar

[3]

L. H. Bai and J. Y. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint,, Insurance: Mathematics and Economics, 42 (2008), 968.  doi: 10.1016/j.insmatheco.2007.11.002.  Google Scholar

[4]

L. H. Bai and H. Y. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers,, Mathematical Methods of Operations Research, 68 (2008), 181.  doi: 10.1007/s00186-007-0195-4.  Google Scholar

[5]

N. Bäuerle, Benchmark and mean-variance problems for insurers,, Mathematical Methods of Operations Research, 62 (2005), 159.   Google Scholar

[6]

F. Black and A. F. Perold, Theory of constant proportion portfolio insurance,, Journal of Economic Dynamics and Control, 16 (1992), 403.  doi: 10.1016/0165-1889(92)90043-E.  Google Scholar

[7]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.  doi: 10.1287/moor.20.4.937.  Google Scholar

[8]

Y. S. Cao and N. Q. Wan, Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation,, Insurance: Mathematics and Economics, 45 (2009), 157.  doi: 10.1016/j.insmatheco.2009.05.006.  Google Scholar

[9]

Ł. Delong and R. Gerrard, Mean-variance portfolio selection for a non-life insurance company,, Mathematical Methods of Operations Research, 66 (2007), 339.  doi: 10.1007/s00186-007-0152-2.  Google Scholar

[10]

S. Emmer, C. Klüppelberg and R. Korn, Optimal portfolio with bound downside risks,, Working paper, (2000).   Google Scholar

[11]

S. Emmer, C. Klüppelberg and R. Korn, Optimal portfolio with bounded captial at risk,, Mathematical Finance, 11 (2001), 365.  doi: 10.1111/1467-9965.00121.  Google Scholar

[12]

P. Gänssler and W. Stute, "Wahrscheinlichkeitstheorie,", Springer-Verlag, (1977).   Google Scholar

[13]

J. Grandlle, "Aspects of Risk Theory,", Springer Series in Statistics: Probability and its Applications, (1991).   Google Scholar

[14]

C. Hipp and M. Plum, Optimal investment for insurers,, Insurance: Mathematics and Economics, 27 (2000), 215.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[15]

D. Iglehart, Diffusion approximations in collective risk theory,, Journal of Applied Probability, 6 (1969), 285.   Google Scholar

[16]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investment for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21.  doi: 10.1016/j.insmatheco.2004.04.004.  Google Scholar

[17]

R. Korn, "Optimal Portfolios,", World Scientific, (1997).   Google Scholar

[18]

Z.-F. Li, K. W. Ng and X.-T. Deng, Continuous-time optimal portfolio selection using mean-CaR models,, Nonlinear Dynamics and Systems Theory, 7 (2007), 35.   Google Scholar

[19]

Z.-F. Li, Y. Zeng and Y. L. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model,, Insurance: Mathematics and Economics, (2011).  doi: 10.1016/j.insmatheco.2011.09.002.  Google Scholar

[20]

Z.-B. Liang, Optimal proportional reinsurance for controlled risk process which is perturbed by diffusion,, Acta Mathematicae Applicatae Sinica, 23 (2007), 477.   Google Scholar

[21]

Z.-B. Liang and J.-Y. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333.  doi: 10.1080/15326340701300894.  Google Scholar

[22]

Z.-B. Liang and J.-Y. Guo, Upper bound for ruin probabilities under optimal investment and proportional reinsurance,, Applied Stochastic Models in Business and Industry, 24 (2008), 109.  doi: 10.1002/asmb.694.  Google Scholar

[23]

C. S. Liu and H. L. Yang, Optimal investment for an insurer to minimize its probability of ruin,, North American Actuarial Journal, 8 (2004), 11.   Google Scholar

[24]

S.-Z. Luo, Ruin minimization for insurers with borrowing constraints,, North American Actuarial Journal, 12 (2009), 143.   Google Scholar

[25]

S.-Z. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434.  doi: 10.1016/j.insmatheco.2007.04.002.  Google Scholar

[26]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model,, Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[27]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.   Google Scholar

[28]

A. F. Perold and W. F. Sharpe, Dynamic strategies for asset allocation,, Financial Analyst Journal, 44 (1988), 16.  doi: 10.2469/faj.v44.n1.16.  Google Scholar

[29]

S. D. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.   Google Scholar

[30]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55.   Google Scholar

[31]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, The Annals of Applied Probability, 12 (2002), 890.   Google Scholar

[32]

M. Taksar and C. Markussen, Optimal dynamic reinsurance policies for large insurance portfolios,, Finance and Stochastics, 7 (2003), 97.   Google Scholar

[33]

Z. W. Wang, J. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach,, Insurance: Mathematics and Economics, 40 (2007), 322.  doi: 10.1016/j.insmatheco.2006.05.003.  Google Scholar

[34]

L. Xu, R. M. Wang and D. J. Yao, On maximizing the expected terminal utility by investment and reinsurance,, Journal of Industrial and Management Optimization, 4 (2008), 801.   Google Scholar

[35]

H. L. Yang and L. H. Zhang, Optimal investment for insurer with jump-diffusion risk process,, Insurance: Mathematics and Economics, 37 (2005), 615.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[36]

Y. Zeng and Z. F. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers,, Insurance: Mathematics and Economics, 49 (2011), 145.  doi: 10.1016/j.insmatheco.2011.01.001.  Google Scholar

[37]

Y. Zeng, Z. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers,, Journal of Industrial and Management Optimization, 6 (2010), 483.   Google Scholar

show all references

References:
[1]

S. Asmussen, B. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation,, Finance and Stochastics, 4 (2000), 299.   Google Scholar

[2]

P. Azcue and N. Muler, Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints,, Insurance: Mathematics and Economics, 44 (2009), 26.  doi: 10.1016/j.insmatheco.2008.09.006.  Google Scholar

[3]

L. H. Bai and J. Y. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint,, Insurance: Mathematics and Economics, 42 (2008), 968.  doi: 10.1016/j.insmatheco.2007.11.002.  Google Scholar

[4]

L. H. Bai and H. Y. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers,, Mathematical Methods of Operations Research, 68 (2008), 181.  doi: 10.1007/s00186-007-0195-4.  Google Scholar

[5]

N. Bäuerle, Benchmark and mean-variance problems for insurers,, Mathematical Methods of Operations Research, 62 (2005), 159.   Google Scholar

[6]

F. Black and A. F. Perold, Theory of constant proportion portfolio insurance,, Journal of Economic Dynamics and Control, 16 (1992), 403.  doi: 10.1016/0165-1889(92)90043-E.  Google Scholar

[7]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.  doi: 10.1287/moor.20.4.937.  Google Scholar

[8]

Y. S. Cao and N. Q. Wan, Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation,, Insurance: Mathematics and Economics, 45 (2009), 157.  doi: 10.1016/j.insmatheco.2009.05.006.  Google Scholar

[9]

Ł. Delong and R. Gerrard, Mean-variance portfolio selection for a non-life insurance company,, Mathematical Methods of Operations Research, 66 (2007), 339.  doi: 10.1007/s00186-007-0152-2.  Google Scholar

[10]

S. Emmer, C. Klüppelberg and R. Korn, Optimal portfolio with bound downside risks,, Working paper, (2000).   Google Scholar

[11]

S. Emmer, C. Klüppelberg and R. Korn, Optimal portfolio with bounded captial at risk,, Mathematical Finance, 11 (2001), 365.  doi: 10.1111/1467-9965.00121.  Google Scholar

[12]

P. Gänssler and W. Stute, "Wahrscheinlichkeitstheorie,", Springer-Verlag, (1977).   Google Scholar

[13]

J. Grandlle, "Aspects of Risk Theory,", Springer Series in Statistics: Probability and its Applications, (1991).   Google Scholar

[14]

C. Hipp and M. Plum, Optimal investment for insurers,, Insurance: Mathematics and Economics, 27 (2000), 215.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[15]

D. Iglehart, Diffusion approximations in collective risk theory,, Journal of Applied Probability, 6 (1969), 285.   Google Scholar

[16]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investment for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21.  doi: 10.1016/j.insmatheco.2004.04.004.  Google Scholar

[17]

R. Korn, "Optimal Portfolios,", World Scientific, (1997).   Google Scholar

[18]

Z.-F. Li, K. W. Ng and X.-T. Deng, Continuous-time optimal portfolio selection using mean-CaR models,, Nonlinear Dynamics and Systems Theory, 7 (2007), 35.   Google Scholar

[19]

Z.-F. Li, Y. Zeng and Y. L. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model,, Insurance: Mathematics and Economics, (2011).  doi: 10.1016/j.insmatheco.2011.09.002.  Google Scholar

[20]

Z.-B. Liang, Optimal proportional reinsurance for controlled risk process which is perturbed by diffusion,, Acta Mathematicae Applicatae Sinica, 23 (2007), 477.   Google Scholar

[21]

Z.-B. Liang and J.-Y. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333.  doi: 10.1080/15326340701300894.  Google Scholar

[22]

Z.-B. Liang and J.-Y. Guo, Upper bound for ruin probabilities under optimal investment and proportional reinsurance,, Applied Stochastic Models in Business and Industry, 24 (2008), 109.  doi: 10.1002/asmb.694.  Google Scholar

[23]

C. S. Liu and H. L. Yang, Optimal investment for an insurer to minimize its probability of ruin,, North American Actuarial Journal, 8 (2004), 11.   Google Scholar

[24]

S.-Z. Luo, Ruin minimization for insurers with borrowing constraints,, North American Actuarial Journal, 12 (2009), 143.   Google Scholar

[25]

S.-Z. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434.  doi: 10.1016/j.insmatheco.2007.04.002.  Google Scholar

[26]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model,, Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[27]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.   Google Scholar

[28]

A. F. Perold and W. F. Sharpe, Dynamic strategies for asset allocation,, Financial Analyst Journal, 44 (1988), 16.  doi: 10.2469/faj.v44.n1.16.  Google Scholar

[29]

S. D. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.   Google Scholar

[30]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55.   Google Scholar

[31]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, The Annals of Applied Probability, 12 (2002), 890.   Google Scholar

[32]

M. Taksar and C. Markussen, Optimal dynamic reinsurance policies for large insurance portfolios,, Finance and Stochastics, 7 (2003), 97.   Google Scholar

[33]

Z. W. Wang, J. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach,, Insurance: Mathematics and Economics, 40 (2007), 322.  doi: 10.1016/j.insmatheco.2006.05.003.  Google Scholar

[34]

L. Xu, R. M. Wang and D. J. Yao, On maximizing the expected terminal utility by investment and reinsurance,, Journal of Industrial and Management Optimization, 4 (2008), 801.   Google Scholar

[35]

H. L. Yang and L. H. Zhang, Optimal investment for insurer with jump-diffusion risk process,, Insurance: Mathematics and Economics, 37 (2005), 615.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[36]

Y. Zeng and Z. F. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers,, Insurance: Mathematics and Economics, 49 (2011), 145.  doi: 10.1016/j.insmatheco.2011.01.001.  Google Scholar

[37]

Y. Zeng, Z. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers,, Journal of Industrial and Management Optimization, 6 (2010), 483.   Google Scholar

[1]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[4]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[5]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[6]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[7]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[8]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[9]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[10]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[11]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[14]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[15]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[16]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[17]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[18]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[19]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[20]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]