July  2012, 8(3): 749-764. doi: 10.3934/jimo.2012.8.749

Lagrange multiplier rules for approximate solutions in vector optimization

1. 

College of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, 611130, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Received  January 2012 Revised  March 2012 Published  June 2012

In Asplund space, Lagrange multiplier rules for approximate solutions of nonsmooth vector optimization problems are studied. The relationships between the vector and the scalar optimization problems are established. And the optimality conditions of approximate solutions for vector optimization are obtained. Moreover, the vector variational inequalities are considered by applying the partial results given in this paper.
Citation: Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial & Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749
References:
[1]

B. El Abdouni and L. Thibault, Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces,, Optimization, 26 (1992), 277.  doi: 10.1080/02331939208843857.  Google Scholar

[2]

T. Amahroq and A. Taa, On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems,, Optimization, 41 (1997), 159.  doi: 10.1080/02331939708844332.  Google Scholar

[3]

J. M. Borwein, J. S. Treiman and Q. J. Zhu, Necessary conditions for constrained optimization problems with semicontinuous and continuous data,, Trans. Amer. Math. Soc., 350 (1998), 2409.  doi: 10.1090/S0002-9947-98-01983-7.  Google Scholar

[4]

J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications,, Nonlinear Anal., 38 (1999), 687.  doi: 10.1016/S0362-546X(98)00142-4.  Google Scholar

[5]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\varepsilon$-Pareto solutions in vector optimization with non-solid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[6]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Funct. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[7]

J. Dutta, Necessary optimality conditions and saddle points for approximate optimization in Banach spaces,, Top, 13 (2005), 127.  doi: 10.1007/BF02578991.  Google Scholar

[8]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces,, Math. Meth. Oper. Res., 64 (2006), 521.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[9]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 17 (2003).   Google Scholar

[11]

S. Helbig, On a new concept for $\varepsilon$-efficiency,, talk at, (1992).   Google Scholar

[12]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.   Google Scholar

[13]

J. Jahn, "Mathematical Vector Optimization in Partially Order Linear Spaces,", Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], 31 (1986).   Google Scholar

[14]

S. S. Kutateladze, Convex $\varepsilon$-programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[15]

P. Loridan, $\varepsilon$-solutions in vector minimization problems,, J. Optim. Theory Appl., 43 (1984), 265.  doi: 10.1007/BF00936165.  Google Scholar

[16]

P. Loridan, Necessary conditions for $\varepsilon$-optimality,, Math. Programming Study, 19 (1982), 140.  doi: 10.1007/BFb0120986.  Google Scholar

[17]

B. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces,, Trans. Amer. Math. Soc., 348 (1996), 1235.   Google Scholar

[18]

B. S. Mordukhovich, Necessary conditions in nonsmooth minimization via lower and upper subgradients,, Set-Valued Anal., 12 (2004), 163.  doi: 10.1023/B:SVAN.0000023398.73288.82.  Google Scholar

[19]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[20]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. II: Applications,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[21]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[22]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[23]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[24]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

[25]

X. Y. Zheng and K. F. Ng, The Lagrange multiplier rule for multifunctions in Banach spaces,, SIAM J. on Optim., 17 (2006), 1154.  doi: 10.1137/060651860.  Google Scholar

[26]

Q. J. Zhu, Necessary conditions for constrained optimization problems in smooth Banach spaces and applications,, SIAM J. Optim., 12 (2002), 1032.  doi: 10.1137/S105262340138339.  Google Scholar

show all references

References:
[1]

B. El Abdouni and L. Thibault, Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces,, Optimization, 26 (1992), 277.  doi: 10.1080/02331939208843857.  Google Scholar

[2]

T. Amahroq and A. Taa, On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems,, Optimization, 41 (1997), 159.  doi: 10.1080/02331939708844332.  Google Scholar

[3]

J. M. Borwein, J. S. Treiman and Q. J. Zhu, Necessary conditions for constrained optimization problems with semicontinuous and continuous data,, Trans. Amer. Math. Soc., 350 (1998), 2409.  doi: 10.1090/S0002-9947-98-01983-7.  Google Scholar

[4]

J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications,, Nonlinear Anal., 38 (1999), 687.  doi: 10.1016/S0362-546X(98)00142-4.  Google Scholar

[5]

M. Durea, J. Dutta and C. Tammer, Lagrange multipliers for $\varepsilon$-Pareto solutions in vector optimization with non-solid cones in Banach spaces,, J. Optim. Theory Appl., 145 (2010), 196.  doi: 10.1007/s10957-009-9609-1.  Google Scholar

[6]

J. Dutta and V. Vetrivel, On approximate minima in vector optimization,, Numer. Funct. Anal. Optim., 22 (2001), 845.  doi: 10.1081/NFA-100108312.  Google Scholar

[7]

J. Dutta, Necessary optimality conditions and saddle points for approximate optimization in Banach spaces,, Top, 13 (2005), 127.  doi: 10.1007/BF02578991.  Google Scholar

[8]

J. Dutta and C. Tammer, Lagrangian conditions for vector optimization in Banach spaces,, Math. Meth. Oper. Res., 64 (2006), 521.  doi: 10.1007/s00186-006-0079-z.  Google Scholar

[9]

C. Gutiérrez, B. Jiménez and V. Novo, A unified approach and optimality conditions for approximate solutions of vector optimization problems,, SIAM J. Optim., 17 (2006), 688.  doi: 10.1137/05062648X.  Google Scholar

[10]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, "Variational Methods in Partially Ordered Spaces,", CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 17 (2003).   Google Scholar

[11]

S. Helbig, On a new concept for $\varepsilon$-efficiency,, talk at, (1992).   Google Scholar

[12]

J.-B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces,, Math. Oper. Res., 4 (1979), 79.   Google Scholar

[13]

J. Jahn, "Mathematical Vector Optimization in Partially Order Linear Spaces,", Methoden und Verfahren der Mathematischen Physik [Methods and Procedures in Mathematical Physics], 31 (1986).   Google Scholar

[14]

S. S. Kutateladze, Convex $\varepsilon$-programming,, Soviet Math. Dokl., 20 (1979), 391.   Google Scholar

[15]

P. Loridan, $\varepsilon$-solutions in vector minimization problems,, J. Optim. Theory Appl., 43 (1984), 265.  doi: 10.1007/BF00936165.  Google Scholar

[16]

P. Loridan, Necessary conditions for $\varepsilon$-optimality,, Math. Programming Study, 19 (1982), 140.  doi: 10.1007/BFb0120986.  Google Scholar

[17]

B. Mordukhovich and Y. Shao, Nonsmooth sequential analysis in Asplund spaces,, Trans. Amer. Math. Soc., 348 (1996), 1235.   Google Scholar

[18]

B. S. Mordukhovich, Necessary conditions in nonsmooth minimization via lower and upper subgradients,, Set-Valued Anal., 12 (2004), 163.  doi: 10.1023/B:SVAN.0000023398.73288.82.  Google Scholar

[19]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[20]

B. S. Mordukhovich, "Variational Analysis and Generalized Differentiation, Vol. II: Applications,", Grundlehren der Mathematischen Wissenschaften, (2006).   Google Scholar

[21]

A. B. Németh, A nonconvex vector minimization problem,, Nonlinear Anal., 10 (1986), 669.  doi: 10.1016/0362-546X(86)90126-4.  Google Scholar

[22]

T. Tanaka, A new approach to approximation of solutions in vector optimization problems,, in, (1995), 497.   Google Scholar

[23]

D. J. White, Epsilon efficiency,, J. Optim. Theory Appl., 49 (1986), 319.  doi: 10.1007/BF00940762.  Google Scholar

[24]

A. Zaffaroni, Degrees of efficiency and degrees of minimality,, SIAM J. Control Optim., 42 (2003), 1071.  doi: 10.1137/S0363012902411532.  Google Scholar

[25]

X. Y. Zheng and K. F. Ng, The Lagrange multiplier rule for multifunctions in Banach spaces,, SIAM J. on Optim., 17 (2006), 1154.  doi: 10.1137/060651860.  Google Scholar

[26]

Q. J. Zhu, Necessary conditions for constrained optimization problems in smooth Banach spaces and applications,, SIAM J. Optim., 12 (2002), 1032.  doi: 10.1137/S105262340138339.  Google Scholar

[1]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[2]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[5]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[6]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[7]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[8]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[9]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[10]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[11]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[12]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[13]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[14]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[15]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[16]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[17]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[18]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[19]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[20]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]