- Previous Article
- JIMO Home
- This Issue
-
Next Article
Lagrange multiplier rules for approximate solutions in vector optimization
Identification for systems governed by nonlinear interval differential equations
1. | Dep. of Elec. Eng., Higher Technological Institute, Ramadan 10th City |
References:
[1] |
N. U. Ahmed, "Elements of Finite-Dimensional and Control Theory,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 37 (1988).
|
[2] |
B. Bedregal, R. Trinade and A. Doria-Neto, Basic concepts of interval digital signal processing,, World Academy of Eng. and Tech., 40 (2008), 66. Google Scholar |
[3] |
J. Chen, G. Wang and L. Sheih, Interval Kalman filtering,, IEEE Trans. on Aerospace and Electr. Systems, (1997). Google Scholar |
[4] |
T. E. Dabbous, Adaptive control of nonlinear systems using fuzzy systems,, Industrial and Management Optimization, 6 (2010), 861.
|
[5] |
M. Kieffor, O. Didrit, L. Jaulin and É. Walter, "Applied Interval Analysis. With Examples in Parameter and State Estimation Robust Control and Robotics,", With 1 CD-ROM (UNIX, (2001).
|
[6] |
R. Moore, "Methods and Applications of Interval Analysis,", SIAM Studies in Applied Mathematics, 2 (1979).
|
[7] |
E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. II. The interval matrix exponential function,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1230.
|
[8] |
E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. III. Initial value problem,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1243.
|
[9] |
E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. I. Fundamental results,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1129.
|
[10] |
A. Rapaport, J. L. Gouze and M. Hadj-Sadok, Interval observers for uncertain biological systems,, Ecological Modeling, 133 (2000), 45. Google Scholar |
[11] |
G. Schröder, Differentiation of interval functions,, Proceedings of AMS, 36 (1972), 485.
|
[12] |
K. Shahiari and S. Tarasiewicz, Linear time varying systems: Model parameters characterization using interval analysis,, Int. Journal of Math. and Comp. in Sim., 1 (2008), 54. Google Scholar |
[13] |
Ye. Smagina and I. Brewer, Using interval arethmetic for robust state feedback design,, Systems and Control Letter, 46 (2002), 187.
|
[14] |
A. Stancu, V. Puig and J. Quevedo, Observers for interval systems using set and trajecrory-based approaches,, 44th IEEE Conf. on Decision and Control, 1 (2005), 6567. Google Scholar |
[15] |
A. Yeşildirek and F. L. Lewis, Feedback linearization using neural networks,, Automatica J. IFAC, 31 (1995), 1659.
|
show all references
References:
[1] |
N. U. Ahmed, "Elements of Finite-Dimensional and Control Theory,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 37 (1988).
|
[2] |
B. Bedregal, R. Trinade and A. Doria-Neto, Basic concepts of interval digital signal processing,, World Academy of Eng. and Tech., 40 (2008), 66. Google Scholar |
[3] |
J. Chen, G. Wang and L. Sheih, Interval Kalman filtering,, IEEE Trans. on Aerospace and Electr. Systems, (1997). Google Scholar |
[4] |
T. E. Dabbous, Adaptive control of nonlinear systems using fuzzy systems,, Industrial and Management Optimization, 6 (2010), 861.
|
[5] |
M. Kieffor, O. Didrit, L. Jaulin and É. Walter, "Applied Interval Analysis. With Examples in Parameter and State Estimation Robust Control and Robotics,", With 1 CD-ROM (UNIX, (2001).
|
[6] |
R. Moore, "Methods and Applications of Interval Analysis,", SIAM Studies in Applied Mathematics, 2 (1979).
|
[7] |
E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. II. The interval matrix exponential function,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1230.
|
[8] |
E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. III. Initial value problem,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1243.
|
[9] |
E. Oppenheimer and A. Michel, Application of interval analysis techniques to linear systems. I. Fundamental results,, IEEE Trans. on Ciruits and Systems, 35 (1988), 1129.
|
[10] |
A. Rapaport, J. L. Gouze and M. Hadj-Sadok, Interval observers for uncertain biological systems,, Ecological Modeling, 133 (2000), 45. Google Scholar |
[11] |
G. Schröder, Differentiation of interval functions,, Proceedings of AMS, 36 (1972), 485.
|
[12] |
K. Shahiari and S. Tarasiewicz, Linear time varying systems: Model parameters characterization using interval analysis,, Int. Journal of Math. and Comp. in Sim., 1 (2008), 54. Google Scholar |
[13] |
Ye. Smagina and I. Brewer, Using interval arethmetic for robust state feedback design,, Systems and Control Letter, 46 (2002), 187.
|
[14] |
A. Stancu, V. Puig and J. Quevedo, Observers for interval systems using set and trajecrory-based approaches,, 44th IEEE Conf. on Decision and Control, 1 (2005), 6567. Google Scholar |
[15] |
A. Yeşildirek and F. L. Lewis, Feedback linearization using neural networks,, Automatica J. IFAC, 31 (1995), 1659.
|
[1] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[2] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[3] |
Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39. |
[4] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[5] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[6] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[7] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[8] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[9] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[10] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[11] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[12] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[13] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[14] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[15] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[16] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[17] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[18] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[19] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[20] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]