October  2012, 8(4): 807-819. doi: 10.3934/jimo.2012.8.807

Effect of application-layer rate-control mechanism on video quality for streaming services

1. 

Graduate school of Informatics, Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan

2. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

Received  September 2011 Revised  July 2012 Published  September 2012

In video streaming, feedback-based rate control is utilized for guaranteeing video quality on an end-to-end basis. This paper considers the effect of feedback-based rate controls on video quality from queueing theoretical point of view. We focus on a video streaming mechanism with a feedback-based rate control where a video server regulates the packet-sending rate according to the number of data blocks stored in a client node. The client node has two buffers: a synchronization buffer and a receiver buffer. Packets arriving to the client node are stored in the synchronization buffer first, and a video-data block is retrieved from a fixed number of packets in the synchronization buffer and forwarded to the receiver buffer. We model the client node as a discrete-time two-queue concatenated system with state-dependent packet arrivals, deriving the starvation and overflow probabilities. Numerical examples show the effectiveness of the feedback-based rate controls for improving both these probabilities. In particular, the rate control which is not sensitive to the number of data blocks in the receiver buffer makes these probabilities significantly small.
Citation: Marino Mitsumura, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of application-layer rate-control mechanism on video quality for streaming services. Journal of Industrial & Management Optimization, 2012, 8 (4) : 807-819. doi: 10.3934/jimo.2012.8.807
References:
[1]

P. de Cuetos and K. W. Ross, Unified framework for optimal video streaming,, IEEE INFOCOM'04, 3 (2004), 1479.   Google Scholar

[2]

K. A. Hua, M. A. Tantaoui and W. Tavanapong, Video delivery technologies for large-scale deployment of multimedia applications,, Proc. IEEE, 92 (2004), 1439.  doi: 10.1109/JPROC.2004.832954.  Google Scholar

[3]

C. Huang and L. Xu, SRC: Stable rate control for streaming media,, IEEE GLOBECOM'03, 7 (2003), 4016.   Google Scholar

[4]

D. Jurca, J. Chakareski, J. P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Commun. Mag., 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[5]

H. Kanakia, P. P. Mishra and A. R. Reibman, An adaptive congestion control scheme for real time packet video transport,, IEEE/ACM Trans. Networking, 3 (1995), 671.   Google Scholar

[6]

L. S. Lam, J. Y. B. Lee, S. C. Liew and W. Wang, "A Transparent Rate Adaption Algorithm for Streaming Video over the Internet,", Proc. of the 18th International conference on advanced information networking and applications (AINA' 04), (2004).   Google Scholar

[7]

G. Latouche, P. A. Jacobs and D. P. Gaver, Finite Markov chain models skip-free in one direction,, Naval Research Logistics Quarterly, 31 (1984), 571.  doi: 10.1002/nav.3800310407.  Google Scholar

[8]

D. Marpe, T. Wiegand and G. J. Sullivan, The H.264/MPEG4 advanced video voding standard and its applications,, IEEE Commun. Mag., 44 (2006), 134.  doi: 10.1109/MCOM.2006.1678121.  Google Scholar

[9]

I. Moccagatta, S. Soudagar, J. Liang and H. Chen, Error-resilient coding in JPEG-2000 and MPEG-4,, IEEE J. Sel. Areas Commun., 18 (2000), 899.  doi: 10.1109/49.848245.  Google Scholar

[10]

J. D. Salehi, Z. L. Zhang, J. Kurose and D. Towsley, Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing,, IEEE/ACM Trans. Netw., 6 (1998), 397.   Google Scholar

[11]

H. Yoshida, K. Nogami and K. Satoda, Proposal and evaluation of joint rate control for stored video streaming,, Proc. IEEE 2010 International communications quality and reliability (CQR) workshop, (2010), 1.   Google Scholar

show all references

References:
[1]

P. de Cuetos and K. W. Ross, Unified framework for optimal video streaming,, IEEE INFOCOM'04, 3 (2004), 1479.   Google Scholar

[2]

K. A. Hua, M. A. Tantaoui and W. Tavanapong, Video delivery technologies for large-scale deployment of multimedia applications,, Proc. IEEE, 92 (2004), 1439.  doi: 10.1109/JPROC.2004.832954.  Google Scholar

[3]

C. Huang and L. Xu, SRC: Stable rate control for streaming media,, IEEE GLOBECOM'03, 7 (2003), 4016.   Google Scholar

[4]

D. Jurca, J. Chakareski, J. P. Wagner and P. Frossard, Enabling adaptive video streaming in P2P systems,, IEEE Commun. Mag., 45 (2007), 108.  doi: 10.1109/MCOM.2007.374427.  Google Scholar

[5]

H. Kanakia, P. P. Mishra and A. R. Reibman, An adaptive congestion control scheme for real time packet video transport,, IEEE/ACM Trans. Networking, 3 (1995), 671.   Google Scholar

[6]

L. S. Lam, J. Y. B. Lee, S. C. Liew and W. Wang, "A Transparent Rate Adaption Algorithm for Streaming Video over the Internet,", Proc. of the 18th International conference on advanced information networking and applications (AINA' 04), (2004).   Google Scholar

[7]

G. Latouche, P. A. Jacobs and D. P. Gaver, Finite Markov chain models skip-free in one direction,, Naval Research Logistics Quarterly, 31 (1984), 571.  doi: 10.1002/nav.3800310407.  Google Scholar

[8]

D. Marpe, T. Wiegand and G. J. Sullivan, The H.264/MPEG4 advanced video voding standard and its applications,, IEEE Commun. Mag., 44 (2006), 134.  doi: 10.1109/MCOM.2006.1678121.  Google Scholar

[9]

I. Moccagatta, S. Soudagar, J. Liang and H. Chen, Error-resilient coding in JPEG-2000 and MPEG-4,, IEEE J. Sel. Areas Commun., 18 (2000), 899.  doi: 10.1109/49.848245.  Google Scholar

[10]

J. D. Salehi, Z. L. Zhang, J. Kurose and D. Towsley, Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing,, IEEE/ACM Trans. Netw., 6 (1998), 397.   Google Scholar

[11]

H. Yoshida, K. Nogami and K. Satoda, Proposal and evaluation of joint rate control for stored video streaming,, Proc. IEEE 2010 International communications quality and reliability (CQR) workshop, (2010), 1.   Google Scholar

[1]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[2]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[4]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[5]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[6]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[7]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[8]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[9]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[13]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[14]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[15]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[16]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[19]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[20]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

[Back to Top]