-
Previous Article
Networks with cascading overloads
- JIMO Home
- This Issue
-
Next Article
Analysis of discontinuous reception with both downlink and uplink packet arrivals in 3GPP LTE
On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations
1. | Department of Mathematics, Beijing Jiaotong University, 100044 Beijing |
2. | Department of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614-0506, United States |
References:
[1] |
J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems: A Computational Approach,", Springer, (2008).
doi: 10.1007/978-3-540-78725-9. |
[2] |
A. Economou and S. Kanta, Equilibrium balking strategiesin the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.
doi: 10.1016/j.orl.2008.06.006. |
[3] |
A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies insingle-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.
doi: 10.1016/j.peva.2011.07.001. |
[4] |
N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.
doi: 10.2307/1913415. |
[5] |
A. Elcan, Optimal customer return rate for an M/M/1 queueing system with retrials,, Probability in the Engineering and Informational Sciences, 8 (1994), 521.
doi: 10.1017/S0269964800003600. |
[6] |
G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997). Google Scholar |
[7] |
P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.
doi: 10.1287/opre.1100.0907. |
[8] |
R. Hassin and M. Haviv, On optimal and equilibrium retrial rates in a queueing system,, Probability in the Engineering and Informational Sciences, 10 (1996), 223.
doi: 10.1017/S0269964800004290. |
[9] |
R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behaviorin Queueing Systems,", Kluwer Academic Publishers, (2003).
doi: 10.1007/978-1-4615-0359-0. |
[10] |
V. G. Kulkarni, A game theoretic model for two types of customers competing for service,, Operation Research Letters, 2 (1983), 119.
|
[11] |
V. G. Kulkarni, On queueing systems with retrials,, Journal of Applied Probability, 20 (1983), 380.
doi: 10.2307/3213810. |
[12] |
P. Naor, The regulation of queue size by levying toll,, Econometrica, 37 (1969), 15.
doi: 10.2307/1909200. |
[13] |
S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009).
|
[14] |
N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer, (2006).
|
[15] |
J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.
doi: 10.1023/A:1010918926884. |
[16] |
J. Wang and F. Zhang, Equilibrium analysis of the observable queueswith balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.
doi: 10.1016/j.amc.2011.08.012. |
show all references
References:
[1] |
J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems: A Computational Approach,", Springer, (2008).
doi: 10.1007/978-3-540-78725-9. |
[2] |
A. Economou and S. Kanta, Equilibrium balking strategiesin the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.
doi: 10.1016/j.orl.2008.06.006. |
[3] |
A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies insingle-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.
doi: 10.1016/j.peva.2011.07.001. |
[4] |
N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.
doi: 10.2307/1913415. |
[5] |
A. Elcan, Optimal customer return rate for an M/M/1 queueing system with retrials,, Probability in the Engineering and Informational Sciences, 8 (1994), 521.
doi: 10.1017/S0269964800003600. |
[6] |
G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997). Google Scholar |
[7] |
P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.
doi: 10.1287/opre.1100.0907. |
[8] |
R. Hassin and M. Haviv, On optimal and equilibrium retrial rates in a queueing system,, Probability in the Engineering and Informational Sciences, 10 (1996), 223.
doi: 10.1017/S0269964800004290. |
[9] |
R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behaviorin Queueing Systems,", Kluwer Academic Publishers, (2003).
doi: 10.1007/978-1-4615-0359-0. |
[10] |
V. G. Kulkarni, A game theoretic model for two types of customers competing for service,, Operation Research Letters, 2 (1983), 119.
|
[11] |
V. G. Kulkarni, On queueing systems with retrials,, Journal of Applied Probability, 20 (1983), 380.
doi: 10.2307/3213810. |
[12] |
P. Naor, The regulation of queue size by levying toll,, Econometrica, 37 (1969), 15.
doi: 10.2307/1909200. |
[13] |
S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009).
|
[14] |
N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer, (2006).
|
[15] |
J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.
doi: 10.1023/A:1010918926884. |
[16] |
J. Wang and F. Zhang, Equilibrium analysis of the observable queueswith balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.
doi: 10.1016/j.amc.2011.08.012. |
[1] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[4] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[5] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[6] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[7] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[8] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[9] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[10] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[11] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[12] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[13] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[14] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[15] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]