October  2012, 8(4): 861-875. doi: 10.3934/jimo.2012.8.861

On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations

1. 

Department of Mathematics, Beijing Jiaotong University, 100044 Beijing

2. 

Department of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614-0506, United States

Received  September 2011 Revised  July 2012 Published  September 2012

A single-server retrial queue with two types of customers in which the server is subject to vacations along with breakdowns and repairs is studied. Two types of customers arrive to the system in accordance with two different independent Poisson flows. The service times of the two types of customers have two different independent general distributions. We assume that when a service is completed, the server will take vacations after an exponentially distributed reserved time. It is assumed that the server has an exponentially distributed lifetime, a generally distributed vacation time and a generally distributed repair time. There is no waiting space in front of the server, therefore, if the server is found busy, or on vacation, or down, the blocked two types of customers form two sources of repeated customers. Explicit expressions are derived for the expected number of retrial customers of each type. Additionally, by assuming both types of customers face linear costs for waiting and retrial, we discuss and compare the optimal and equilibrium retrial rates regarding the situations in which the customers are cooperative or noncooperative, respectively.
Citation: Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861
References:
[1]

J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems: A Computational Approach,", Springer, (2008).  doi: 10.1007/978-3-540-78725-9.  Google Scholar

[2]

A. Economou and S. Kanta, Equilibrium balking strategiesin the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.  doi: 10.1016/j.orl.2008.06.006.  Google Scholar

[3]

A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies insingle-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[4]

N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.  doi: 10.2307/1913415.  Google Scholar

[5]

A. Elcan, Optimal customer return rate for an M/M/1 queueing system with retrials,, Probability in the Engineering and Informational Sciences, 8 (1994), 521.  doi: 10.1017/S0269964800003600.  Google Scholar

[6]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[7]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.  doi: 10.1287/opre.1100.0907.  Google Scholar

[8]

R. Hassin and M. Haviv, On optimal and equilibrium retrial rates in a queueing system,, Probability in the Engineering and Informational Sciences, 10 (1996), 223.  doi: 10.1017/S0269964800004290.  Google Scholar

[9]

R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behaviorin Queueing Systems,", Kluwer Academic Publishers, (2003).  doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[10]

V. G. Kulkarni, A game theoretic model for two types of customers competing for service,, Operation Research Letters, 2 (1983), 119.   Google Scholar

[11]

V. G. Kulkarni, On queueing systems with retrials,, Journal of Applied Probability, 20 (1983), 380.  doi: 10.2307/3213810.  Google Scholar

[12]

P. Naor, The regulation of queue size by levying toll,, Econometrica, 37 (1969), 15.  doi: 10.2307/1909200.  Google Scholar

[13]

S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer, (2006).   Google Scholar

[15]

J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.  doi: 10.1023/A:1010918926884.  Google Scholar

[16]

J. Wang and F. Zhang, Equilibrium analysis of the observable queueswith balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.  doi: 10.1016/j.amc.2011.08.012.  Google Scholar

show all references

References:
[1]

J. R. Artalejo and A. Gómez-Corral, "Retrial Queueing Systems: A Computational Approach,", Springer, (2008).  doi: 10.1007/978-3-540-78725-9.  Google Scholar

[2]

A. Economou and S. Kanta, Equilibrium balking strategiesin the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.  doi: 10.1016/j.orl.2008.06.006.  Google Scholar

[3]

A. Economou, A. Gomez-Corral and S. Kanta, Optimal balking strategies insingle-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.  doi: 10.1016/j.peva.2011.07.001.  Google Scholar

[4]

N. M. Edelson and K. Hildebrand, Congestion tolls for Poisson queueing processes,, Econometrica, 43 (1975), 81.  doi: 10.2307/1913415.  Google Scholar

[5]

A. Elcan, Optimal customer return rate for an M/M/1 queueing system with retrials,, Probability in the Engineering and Informational Sciences, 8 (1994), 521.  doi: 10.1017/S0269964800003600.  Google Scholar

[6]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997).   Google Scholar

[7]

P. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues,, Operations Research, 59 (2011), 986.  doi: 10.1287/opre.1100.0907.  Google Scholar

[8]

R. Hassin and M. Haviv, On optimal and equilibrium retrial rates in a queueing system,, Probability in the Engineering and Informational Sciences, 10 (1996), 223.  doi: 10.1017/S0269964800004290.  Google Scholar

[9]

R. Hassin and M. Haviv, "To Queue or Not to Queue: Equilibrium Behaviorin Queueing Systems,", Kluwer Academic Publishers, (2003).  doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[10]

V. G. Kulkarni, A game theoretic model for two types of customers competing for service,, Operation Research Letters, 2 (1983), 119.   Google Scholar

[11]

V. G. Kulkarni, On queueing systems with retrials,, Journal of Applied Probability, 20 (1983), 380.  doi: 10.2307/3213810.  Google Scholar

[12]

P. Naor, The regulation of queue size by levying toll,, Econometrica, 37 (1969), 15.  doi: 10.2307/1909200.  Google Scholar

[13]

S. Stidham, Jr., "Optimal Design of Queueing Systems,", CRC Press, (2009).   Google Scholar

[14]

N. Tian and Z. G. Zhang, "Vacation Queueing Models: Theory and Applications,", Springer, (2006).   Google Scholar

[15]

J. Wang, J. Cao and Q. Li, Reliability analysis of the retrial queue with server breakdowns and repairs,, Queueing Systems, 38 (2001), 363.  doi: 10.1023/A:1010918926884.  Google Scholar

[16]

J. Wang and F. Zhang, Equilibrium analysis of the observable queueswith balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.  doi: 10.1016/j.amc.2011.08.012.  Google Scholar

[1]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[4]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[5]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[10]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[11]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[12]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[13]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[14]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[15]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]