
Previous Article
A tropical cyclonebased method for global optimization
 JIMO Home
 This Issue

Next Article
Global and global linear convergence of smoothing algorithm for the Cartesian $P_*(\kappa)$SCLCP
Solving PartitioningHub LocationRouting Problem using DCA
1.  CRP Henri Tudor, 29 avenue John F. Kennedy, 1855 Kirchberg, Luxembourg, Luxembourg 
2.  Laboratory of Theoretical and Applied Computer Science (LITA), Paul Verlaine  Metz University, Ile du Saulcy, 57045, Metz, France 
3.  Laboratory of Modelling, Optimization & Operations Research, National Institute for Applied Sciences  Rouen, 76801 SaintEtienneduRouvray Cedex, France 
References:
[1] 
S. Alumur and B. Y. Kara, Network hub location problems: The state of the art, European Journal of Operational Research, 190 (2008), 121. doi: 10.1016/j.ejor.2007.06.008. 
[2] 
J. F. Campbell, Strategic network design for motor carriers, in "Logistics Systems: Design and Optimization" (eds. A. Langevin and D. Riopel), Springer, U.S.A., 2005. doi: 10.1007/038724977X_8. 
[3] 
D. Catanzaro, E. Gourdin, M. Labbé and F. A. Özsoy, A branchandcut algorithm for the partitioninghub locationrouting problem, Computers & Operations Research, 38 (2011), 539549. doi: 10.1016/j.cor.2010.07.014. 
[4] 
M. Grotschel and Y. Wakabayashi, Facets of the clique partitioning polytope, Mathematical Programming, 47 (1990), 367387. doi: 10.1007/BF01580870. 
[5] 
Le Thi Hoai An and Pham Dinh Tao, A Continuous approach for globally solving linearly constrained quadratic zeroone programming problem, Optimization, 50 (2001), 93120. 
[6] 
Le Thi Hoai An and Pham Dinh Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world non convex optimization problems, Annals of Operations Research, 133 (2005), 2346. doi: 10.1007/s1047900450221. 
[7] 
F. A. Ozsoy, M. Labbe and E. Gourdin, Analytical and empirical comparison of integer programming formulations for a partitioninghub locationrouting problem, Technical Report 586, ULB, Department of Computer Science, 2008. 
[8] 
Pham Dinh Tao and Le Thi Hoai An, Convex analysis approach to DC programming: Theory, Algorithms and Applications, Acta Mathematica Vietnamica, 22 (1997), 289355. 
[9] 
Pham Dinh Tao and Le Thi Hoai An, A DC optimization algorithm for solving the trustregion subproblem, SIAM J.Optimization, 8 (1998), 476505. doi: 10.1137/S1052623494274313. 
[10] 
Pham Dinh Tao, N. Nguyen Canh and Le Thi Hoai An, An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs, J. Global Optimization, 48 (2010), 595632. doi: 10.1007/s108980099507y. 
show all references
References:
[1] 
S. Alumur and B. Y. Kara, Network hub location problems: The state of the art, European Journal of Operational Research, 190 (2008), 121. doi: 10.1016/j.ejor.2007.06.008. 
[2] 
J. F. Campbell, Strategic network design for motor carriers, in "Logistics Systems: Design and Optimization" (eds. A. Langevin and D. Riopel), Springer, U.S.A., 2005. doi: 10.1007/038724977X_8. 
[3] 
D. Catanzaro, E. Gourdin, M. Labbé and F. A. Özsoy, A branchandcut algorithm for the partitioninghub locationrouting problem, Computers & Operations Research, 38 (2011), 539549. doi: 10.1016/j.cor.2010.07.014. 
[4] 
M. Grotschel and Y. Wakabayashi, Facets of the clique partitioning polytope, Mathematical Programming, 47 (1990), 367387. doi: 10.1007/BF01580870. 
[5] 
Le Thi Hoai An and Pham Dinh Tao, A Continuous approach for globally solving linearly constrained quadratic zeroone programming problem, Optimization, 50 (2001), 93120. 
[6] 
Le Thi Hoai An and Pham Dinh Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world non convex optimization problems, Annals of Operations Research, 133 (2005), 2346. doi: 10.1007/s1047900450221. 
[7] 
F. A. Ozsoy, M. Labbe and E. Gourdin, Analytical and empirical comparison of integer programming formulations for a partitioninghub locationrouting problem, Technical Report 586, ULB, Department of Computer Science, 2008. 
[8] 
Pham Dinh Tao and Le Thi Hoai An, Convex analysis approach to DC programming: Theory, Algorithms and Applications, Acta Mathematica Vietnamica, 22 (1997), 289355. 
[9] 
Pham Dinh Tao and Le Thi Hoai An, A DC optimization algorithm for solving the trustregion subproblem, SIAM J.Optimization, 8 (1998), 476505. doi: 10.1137/S1052623494274313. 
[10] 
Pham Dinh Tao, N. Nguyen Canh and Le Thi Hoai An, An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs, J. Global Optimization, 48 (2010), 595632. doi: 10.1007/s108980099507y. 
[1] 
Gang Li, Yinghong Xu, Zhenhua Qin. Optimality conditions for composite DC infinite programming problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022064 
[2] 
Changzhi Wu, Chaojie Li, Qiang Long. A DC programming approach for sensor network localization with uncertainties in anchor positions. Journal of Industrial and Management Optimization, 2014, 10 (3) : 817826. doi: 10.3934/jimo.2014.10.817 
[3] 
Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradientbased convex approximations method for DC programming and its applications. Journal of Industrial and Management Optimization, 2016, 12 (4) : 13491366. doi: 10.3934/jimo.2016.12.1349 
[4] 
Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 167185. doi: 10.3934/naco.2012.2.167 
[5] 
Yanjun Wang, Kaiji Shen. A new concave reformulation and its application in solving DC programming globally under uncertain environment. Journal of Industrial and Management Optimization, 2020, 16 (5) : 23512367. doi: 10.3934/jimo.2019057 
[6] 
Cheng Ma, Xun Li, KaFai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semiinfinite programming problems. Journal of Industrial and Management Optimization, 2012, 8 (3) : 705726. doi: 10.3934/jimo.2012.8.705 
[7] 
Zhiguo Feng, KaFai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557566. doi: 10.3934/jimo.2014.10.557 
[8] 
Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial and Management Optimization, 2009, 5 (3) : 585601. doi: 10.3934/jimo.2009.5.585 
[9] 
Shiyun Wang, YongJin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965976. doi: 10.3934/jimo.2014.10.965 
[10] 
Rong Hu, YaPing Fang. A parametric simplex algorithm for biobjective piecewise linear programming problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 573586. doi: 10.3934/jimo.2016032 
[11] 
Mahmoud Ameri, Armin Jarrahi. An executive model for networklevel pavement maintenance and rehabilitation planning based on linear integer programming. Journal of Industrial and Management Optimization, 2020, 16 (2) : 795811. doi: 10.3934/jimo.2018179 
[12] 
Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixedinteger linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial and Management Optimization, 2017, 13 (4) : 16011623. doi: 10.3934/jimo.2017009 
[13] 
Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probebased traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8 (3) : 783802. doi: 10.3934/nhm.2013.8.783 
[14] 
Mahdi Roozbeh, Saman Babaie–Kafaki, Zohre Aminifard. Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models. Journal of Industrial and Management Optimization, 2021, 17 (6) : 34753491. doi: 10.3934/jimo.2020128 
[15] 
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353362. doi: 10.3934/jimo.2008.4.353 
[16] 
Yibing Lv, Tiesong Hu, Jianlin Jiang. Penalty methodbased equilibrium point approach for solving the linear bilevel multiobjective programming problem. Discrete and Continuous Dynamical Systems  S, 2020, 13 (6) : 17431755. doi: 10.3934/dcdss.2020102 
[17] 
Chetan D. Pahlajani. Randomly perturbed switching dynamics of a dc/dc converter. Discrete and Continuous Dynamical Systems  B, 2017, 22 (2) : 569584. doi: 10.3934/dcdsb.2017027 
[18] 
Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial and Management Optimization, 2009, 5 (3) : 629649. doi: 10.3934/jimo.2009.5.629 
[19] 
Charles Fefferman. Interpolation by linear programming I. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 477492. doi: 10.3934/dcds.2011.30.477 
[20] 
Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 10271039. doi: 10.3934/jimo.2011.7.1027 
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]