January  2012, 8(1): 87-102. doi: 10.3934/jimo.2012.8.87

Solving Partitioning-Hub Location-Routing Problem using DCA

1. 

CRP Henri Tudor, 29 avenue John F. Kennedy, 1855 Kirchberg, Luxembourg, Luxembourg

2. 

Laboratory of Theoretical and Applied Computer Science (LITA), Paul Verlaine - Metz University, Ile du Saulcy, 57045, Metz, France

3. 

Laboratory of Modelling, Optimization & Operations Research, National Institute for Applied Sciences - Rouen, 76801 Saint-Etienne-du-Rouvray Cedex, France

Received  February 2011 Revised  July 2011 Published  November 2011

The Partitioning-Hub Location-Routing Problem (PHLRP) is a hub location problem involving graph partitioning and routing features. PHLRP consists of partitioning a given network into sub-networks, locating at least one hub in each sub-network and routing the traffic within the network at minimum cost. There are various important applications of PHLRP, such as in the deployment of network routing protocol problems and in the planning of freight distribution problems. We first present the formulation of this problem as an Binary Integer Linear Programming (BILP) and then investigate a new method based on DC (Difference of Convex functions) programming and DCA (DC Algorithms). Preliminary numerical results are compared with CPLEX, the best solver for BILP. These results show that the proposed algorithm is efficient.
Citation: Anh Son Ta, Le Thi Hoai An, Djamel Khadraoui, Pham Dinh Tao. Solving Partitioning-Hub Location-Routing Problem using DCA. Journal of Industrial & Management Optimization, 2012, 8 (1) : 87-102. doi: 10.3934/jimo.2012.8.87
References:
[1]

S. Alumur and B. Y. Kara, Network hub location problems: The state of the art,, European Journal of Operational Research, 190 (2008), 1.  doi: 10.1016/j.ejor.2007.06.008.  Google Scholar

[2]

J. F. Campbell, Strategic network design for motor carriers,, in, (2005).  doi: 10.1007/0-387-24977-X_8.  Google Scholar

[3]

D. Catanzaro, E. Gourdin, M. Labbé and F. A. Özsoy, A branch-and-cut algorithm for the partitioning-hub location-routing problem,, Computers & Operations Research, 38 (2011), 539.  doi: 10.1016/j.cor.2010.07.014.  Google Scholar

[4]

M. Grotschel and Y. Wakabayashi, Facets of the clique partitioning polytope,, Mathematical Programming, 47 (1990), 367.  doi: 10.1007/BF01580870.  Google Scholar

[5]

Le Thi Hoai An and Pham Dinh Tao, A Continuous approach for globally solving linearly constrained quadratic zero-one programming problem,, Optimization, 50 (2001), 93.   Google Scholar

[6]

Le Thi Hoai An and Pham Dinh Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world non convex optimization problems,, Annals of Operations Research, 133 (2005), 23.  doi: 10.1007/s10479-004-5022-1.  Google Scholar

[7]

F. A. Ozsoy, M. Labbe and E. Gourdin, Analytical and empirical comparison of integer programming formulations for a partitioning-hub location-routing problem,, Technical Report 586, (2008).   Google Scholar

[8]

Pham Dinh Tao and Le Thi Hoai An, Convex analysis approach to DC programming: Theory, Algorithms and Applications,, Acta Mathematica Vietnamica, 22 (1997), 289.   Google Scholar

[9]

Pham Dinh Tao and Le Thi Hoai An, A DC optimization algorithm for solving the trust-region subproblem,, SIAM J.Optimization, 8 (1998), 476.  doi: 10.1137/S1052623494274313.  Google Scholar

[10]

Pham Dinh Tao, N. Nguyen Canh and Le Thi Hoai An, An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs,, J. Global Optimization, 48 (2010), 595.  doi: 10.1007/s10898-009-9507-y.  Google Scholar

show all references

References:
[1]

S. Alumur and B. Y. Kara, Network hub location problems: The state of the art,, European Journal of Operational Research, 190 (2008), 1.  doi: 10.1016/j.ejor.2007.06.008.  Google Scholar

[2]

J. F. Campbell, Strategic network design for motor carriers,, in, (2005).  doi: 10.1007/0-387-24977-X_8.  Google Scholar

[3]

D. Catanzaro, E. Gourdin, M. Labbé and F. A. Özsoy, A branch-and-cut algorithm for the partitioning-hub location-routing problem,, Computers & Operations Research, 38 (2011), 539.  doi: 10.1016/j.cor.2010.07.014.  Google Scholar

[4]

M. Grotschel and Y. Wakabayashi, Facets of the clique partitioning polytope,, Mathematical Programming, 47 (1990), 367.  doi: 10.1007/BF01580870.  Google Scholar

[5]

Le Thi Hoai An and Pham Dinh Tao, A Continuous approach for globally solving linearly constrained quadratic zero-one programming problem,, Optimization, 50 (2001), 93.   Google Scholar

[6]

Le Thi Hoai An and Pham Dinh Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world non convex optimization problems,, Annals of Operations Research, 133 (2005), 23.  doi: 10.1007/s10479-004-5022-1.  Google Scholar

[7]

F. A. Ozsoy, M. Labbe and E. Gourdin, Analytical and empirical comparison of integer programming formulations for a partitioning-hub location-routing problem,, Technical Report 586, (2008).   Google Scholar

[8]

Pham Dinh Tao and Le Thi Hoai An, Convex analysis approach to DC programming: Theory, Algorithms and Applications,, Acta Mathematica Vietnamica, 22 (1997), 289.   Google Scholar

[9]

Pham Dinh Tao and Le Thi Hoai An, A DC optimization algorithm for solving the trust-region subproblem,, SIAM J.Optimization, 8 (1998), 476.  doi: 10.1137/S1052623494274313.  Google Scholar

[10]

Pham Dinh Tao, N. Nguyen Canh and Le Thi Hoai An, An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs,, J. Global Optimization, 48 (2010), 595.  doi: 10.1007/s10898-009-9507-y.  Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[3]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[4]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[8]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[9]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[10]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[11]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[12]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[13]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[14]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (5)

[Back to Top]