-
Previous Article
A tropical cyclone-based method for global optimization
- JIMO Home
- This Issue
-
Next Article
Global and global linear convergence of smoothing algorithm for the Cartesian $P_*(\kappa)$-SCLCP
Solving Partitioning-Hub Location-Routing Problem using DCA
1. | CRP Henri Tudor, 29 avenue John F. Kennedy, 1855 Kirchberg, Luxembourg, Luxembourg |
2. | Laboratory of Theoretical and Applied Computer Science (LITA), Paul Verlaine - Metz University, Ile du Saulcy, 57045, Metz, France |
3. | Laboratory of Modelling, Optimization & Operations Research, National Institute for Applied Sciences - Rouen, 76801 Saint-Etienne-du-Rouvray Cedex, France |
References:
[1] |
S. Alumur and B. Y. Kara, Network hub location problems: The state of the art,, European Journal of Operational Research, 190 (2008), 1.
doi: 10.1016/j.ejor.2007.06.008. |
[2] |
J. F. Campbell, Strategic network design for motor carriers,, in, (2005).
doi: 10.1007/0-387-24977-X_8. |
[3] |
D. Catanzaro, E. Gourdin, M. Labbé and F. A. Özsoy, A branch-and-cut algorithm for the partitioning-hub location-routing problem,, Computers & Operations Research, 38 (2011), 539.
doi: 10.1016/j.cor.2010.07.014. |
[4] |
M. Grotschel and Y. Wakabayashi, Facets of the clique partitioning polytope,, Mathematical Programming, 47 (1990), 367.
doi: 10.1007/BF01580870. |
[5] |
Le Thi Hoai An and Pham Dinh Tao, A Continuous approach for globally solving linearly constrained quadratic zero-one programming problem,, Optimization, 50 (2001), 93.
|
[6] |
Le Thi Hoai An and Pham Dinh Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world non convex optimization problems,, Annals of Operations Research, 133 (2005), 23.
doi: 10.1007/s10479-004-5022-1. |
[7] |
F. A. Ozsoy, M. Labbe and E. Gourdin, Analytical and empirical comparison of integer programming formulations for a partitioning-hub location-routing problem,, Technical Report 586, (2008). Google Scholar |
[8] |
Pham Dinh Tao and Le Thi Hoai An, Convex analysis approach to DC programming: Theory, Algorithms and Applications,, Acta Mathematica Vietnamica, 22 (1997), 289.
|
[9] |
Pham Dinh Tao and Le Thi Hoai An, A DC optimization algorithm for solving the trust-region subproblem,, SIAM J.Optimization, 8 (1998), 476.
doi: 10.1137/S1052623494274313. |
[10] |
Pham Dinh Tao, N. Nguyen Canh and Le Thi Hoai An, An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs,, J. Global Optimization, 48 (2010), 595.
doi: 10.1007/s10898-009-9507-y. |
show all references
References:
[1] |
S. Alumur and B. Y. Kara, Network hub location problems: The state of the art,, European Journal of Operational Research, 190 (2008), 1.
doi: 10.1016/j.ejor.2007.06.008. |
[2] |
J. F. Campbell, Strategic network design for motor carriers,, in, (2005).
doi: 10.1007/0-387-24977-X_8. |
[3] |
D. Catanzaro, E. Gourdin, M. Labbé and F. A. Özsoy, A branch-and-cut algorithm for the partitioning-hub location-routing problem,, Computers & Operations Research, 38 (2011), 539.
doi: 10.1016/j.cor.2010.07.014. |
[4] |
M. Grotschel and Y. Wakabayashi, Facets of the clique partitioning polytope,, Mathematical Programming, 47 (1990), 367.
doi: 10.1007/BF01580870. |
[5] |
Le Thi Hoai An and Pham Dinh Tao, A Continuous approach for globally solving linearly constrained quadratic zero-one programming problem,, Optimization, 50 (2001), 93.
|
[6] |
Le Thi Hoai An and Pham Dinh Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world non convex optimization problems,, Annals of Operations Research, 133 (2005), 23.
doi: 10.1007/s10479-004-5022-1. |
[7] |
F. A. Ozsoy, M. Labbe and E. Gourdin, Analytical and empirical comparison of integer programming formulations for a partitioning-hub location-routing problem,, Technical Report 586, (2008). Google Scholar |
[8] |
Pham Dinh Tao and Le Thi Hoai An, Convex analysis approach to DC programming: Theory, Algorithms and Applications,, Acta Mathematica Vietnamica, 22 (1997), 289.
|
[9] |
Pham Dinh Tao and Le Thi Hoai An, A DC optimization algorithm for solving the trust-region subproblem,, SIAM J.Optimization, 8 (1998), 476.
doi: 10.1137/S1052623494274313. |
[10] |
Pham Dinh Tao, N. Nguyen Canh and Le Thi Hoai An, An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs,, J. Global Optimization, 48 (2010), 595.
doi: 10.1007/s10898-009-9507-y. |
[1] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[2] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[3] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[4] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[5] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[6] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[7] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[8] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[9] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[10] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[11] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[12] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[13] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[14] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]