-
Previous Article
Analysis of customers' impatience in an M/M/1 queue with working vacations
- JIMO Home
- This Issue
-
Next Article
On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations
Networks with cascading overloads
1. | Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6M8, Canada, Canada |
2. | Industrial and Systems Engineering, Georgia Institute of Technology, Groseclose Building, Room 428, Atlanta GA 30332-0205, United States |
References:
[1] |
I. Adan, R. D. Foley and D. R. McDonald, Exact asymptotics for the stationary distribution of a Markov chain: A production model,, Queueing Syst., 62 (2009), 311.
doi: 10.1007/s11134-009-9140-y. |
[2] |
V. Anantharam, P. Heidelberger and P. Tsoucas, Analysis of rare events in continuous time Markov chains via time reversal and fluid approximation,, Research Report, (1628). Google Scholar |
[3] |
F. Baccelli and P. Bremaud, "Elements of Queueing Theory,", Springer Verlag, (2003).
|
[4] |
F. Baccelli and D. McDonald, Rare events for stationary processes,, Stochastic Processes and their Applications, 89 (1997), 141.
doi: 10.1016/S0304-4149(00)00018-1. |
[5] |
A. A. Borovkov and A. A. Mogul'skii, Limit theorems in the boundary hitting problem for a multidimensional random walk,, Siberian Mathematical Journal, 4 (2001), 245.
doi: 10.1023/A:1004832928857. |
[6] |
R. Foley and D. McDonald, Join the shortest queue: stability and exact asymptotics,, Annals of Applied Probability, 11 (2001), 569.
|
[7] |
R. D. Foley and D. R. McDonald, Large deviations of amodified jackson network: Stability and rough asymptotics,, Ann. Appl. Probab., 15 (2004), 519.
doi: 10.1214/105051604000000666. |
[8] |
R. D. Foley and D. R. McDonald, Bridges and networks: Exact asymptotics,, Annals of Applied Probability, 15 (2005).
doi: 10.1214/105051604000000675. |
[9] |
R. D. Foley and D. R. McDonald, Constructing a harmonic function for an irreducible non-negative matrix with convergence parameter $R > 1$,, Accepted subject to revisions London Mathematical Society., (). Google Scholar |
[10] |
I. Ignatiouk-Robert and C. Loree, Martin boundary of a killed random walk on a quadrant,, Ann. Probab, 38 (2010), 1106.
doi: 10.1214/09-AOP506. |
[11] |
T. G. Kurtz, Strong approximation theorems for density dependent Markov chains,, Stoch. Proc. Appl., 6 (1978), 223.
doi: 10.1016/0304-4149(78)90020-0. |
[12] |
K. Majewski and K. Ramanan, How large queue lengths build up in a Jackson network,, preprint. 2008., (2008). Google Scholar |
[13] |
S. P. Meyn and R. L. Tweedie, "Markov Chains and Stochastic Stability,", Springer-Verlag, (1993).
|
[14] |
M. Miyazawa and Y. Q. Zhao, The stationary tail asymptotics in the GI/G/1-type queue with countably many background states,, Advances in Applied Probability, 36 (2004), 1231.
doi: 10.1239/aap/1103662965. |
[15] |
V. Nicola and T. Zaburnenko, Efficient importance sampling heuristics for the simulation of population overflow in jackson networks,, ACM Transactions on Modeling and Computer Simulation, 17 (2007). Google Scholar |
show all references
References:
[1] |
I. Adan, R. D. Foley and D. R. McDonald, Exact asymptotics for the stationary distribution of a Markov chain: A production model,, Queueing Syst., 62 (2009), 311.
doi: 10.1007/s11134-009-9140-y. |
[2] |
V. Anantharam, P. Heidelberger and P. Tsoucas, Analysis of rare events in continuous time Markov chains via time reversal and fluid approximation,, Research Report, (1628). Google Scholar |
[3] |
F. Baccelli and P. Bremaud, "Elements of Queueing Theory,", Springer Verlag, (2003).
|
[4] |
F. Baccelli and D. McDonald, Rare events for stationary processes,, Stochastic Processes and their Applications, 89 (1997), 141.
doi: 10.1016/S0304-4149(00)00018-1. |
[5] |
A. A. Borovkov and A. A. Mogul'skii, Limit theorems in the boundary hitting problem for a multidimensional random walk,, Siberian Mathematical Journal, 4 (2001), 245.
doi: 10.1023/A:1004832928857. |
[6] |
R. Foley and D. McDonald, Join the shortest queue: stability and exact asymptotics,, Annals of Applied Probability, 11 (2001), 569.
|
[7] |
R. D. Foley and D. R. McDonald, Large deviations of amodified jackson network: Stability and rough asymptotics,, Ann. Appl. Probab., 15 (2004), 519.
doi: 10.1214/105051604000000666. |
[8] |
R. D. Foley and D. R. McDonald, Bridges and networks: Exact asymptotics,, Annals of Applied Probability, 15 (2005).
doi: 10.1214/105051604000000675. |
[9] |
R. D. Foley and D. R. McDonald, Constructing a harmonic function for an irreducible non-negative matrix with convergence parameter $R > 1$,, Accepted subject to revisions London Mathematical Society., (). Google Scholar |
[10] |
I. Ignatiouk-Robert and C. Loree, Martin boundary of a killed random walk on a quadrant,, Ann. Probab, 38 (2010), 1106.
doi: 10.1214/09-AOP506. |
[11] |
T. G. Kurtz, Strong approximation theorems for density dependent Markov chains,, Stoch. Proc. Appl., 6 (1978), 223.
doi: 10.1016/0304-4149(78)90020-0. |
[12] |
K. Majewski and K. Ramanan, How large queue lengths build up in a Jackson network,, preprint. 2008., (2008). Google Scholar |
[13] |
S. P. Meyn and R. L. Tweedie, "Markov Chains and Stochastic Stability,", Springer-Verlag, (1993).
|
[14] |
M. Miyazawa and Y. Q. Zhao, The stationary tail asymptotics in the GI/G/1-type queue with countably many background states,, Advances in Applied Probability, 36 (2004), 1231.
doi: 10.1239/aap/1103662965. |
[15] |
V. Nicola and T. Zaburnenko, Efficient importance sampling heuristics for the simulation of population overflow in jackson networks,, ACM Transactions on Modeling and Computer Simulation, 17 (2007). Google Scholar |
[1] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[2] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[3] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[4] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[5] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[6] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[7] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[8] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[9] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[10] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[11] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[12] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[13] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[14] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[15] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[16] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[17] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[18] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]