October  2012, 8(4): 895-908. doi: 10.3934/jimo.2012.8.895

Analysis of customers' impatience in an M/M/1 queue with working vacations

1. 

Department of Statistics, College of Sciences, Yanshan University, Qinhuangdao 066004, China

2. 

Department of Intelligence and Informatics, Konan University, 8-9-1 Okamoto, Kobe 658-8501

Received  September 2011 Revised  July 2012 Published  September 2012

In this paper, we analyze an M/M/1 queueing system with working vacations and impatient customers. We examine the case that the customers' impatience is due to a working vacation. During a working vacation, customers are served at a slower than usual service rate and are likely to become impatient. Whenever a customer arrives in the system and realizes that the server is on vacation, the customer activates an ``impatience timer" which is exponentially distributed. If a customer's service has not been completed before the customer's timer expires, the customer leaves the queue, never to return. By analyzing this model, we derive the probability generating functions of the number of customers in the system when the server is in a service period and a working vacation, respectively. We further obtain the closed-form expressions for various performance measures, including the mean system size, the mean sojourn time of a customer served, the proportion of customers served and the rate of abandonment due to impatience. Finally, we present some numerical results to demonstrate effects of some parameters on these performance measures of the system.
Citation: Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895
References:
[1]

R. O. Al-Seedy, S. A. El-Shehawy, A. A. El-Sherbiny and S. I. Ammar, Transient solution of the M/M/c queue with balking and reneging,, Computers and Mathematics with Applications, 57 (2009), 1280.  doi: 10.1016/j.camwa.2009.01.017.  Google Scholar

[2]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[3]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1017/S0269964808000296.  Google Scholar

[4]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Operations Research Letters, 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[5]

F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers,, Advances in Applied Probability, 16 (1984), 887.  doi: 10.2307/1427345.  Google Scholar

[6]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple vacation-analytic analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[7]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[8]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342.  doi: 10.1145/384268.378845.  Google Scholar

[9]

O. J. Boxma and P. R. de Waal, Multiserver queues with impatient customers,, in, (1994), 743.   Google Scholar

[10]

D. J. Daley, General customer impatience in the queue GI/G/1,, Journal of Applied Probability, 2 (1965), 186.   Google Scholar

[11]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreliable queue,, European Journal of Operational Research, 203 (2010), 143.  doi: 10.1016/j.ejor.2009.07.014.  Google Scholar

[12]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutorial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.   Google Scholar

[13]

E. R. Obert, Reneging phenomenon of single channel queues,, Mathematics of Operations Research, 4 (1979), 162.   Google Scholar

[14]

C. Palm, Methods of judging the annoyance caused by congestion,, Tele., 4 (1953), 189.   Google Scholar

[15]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247.  doi: 10.1016/j.ejor.2009.02.024.  Google Scholar

[16]

Y. Sakuma, A. Inoie, K. Kawanishi and M. Miyazawa, Tail asymptotics for waiting time distribution of an M/M/$s$ queue with general impatient time,, Journal of Industrial and Management Optimization, 7 (2011), 593.   Google Scholar

[17]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[18]

L. Takacs, A single-server queue with limited virtual waiting time,, Journal of Applied Probability, 11 (1974), 612.  doi: 10.2307/3212710.  Google Scholar

[19]

B. Van Houdt, R. B. Lenin and C. Blonia, Delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue with age-dependent service times,, Queueing Systems, 45 (2003), 59.  doi: 10.1023/A:1025695818046.  Google Scholar

[20]

D. Wu and H. Takagi, M/G/1 queue with multiple working vacations,, Performance Evaluation, 63 (2006), 654.  doi: 10.1016/j.peva.2005.05.005.  Google Scholar

[21]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[22]

D. Yue and W. Yue, Analysis of M/M/$c$/N queueing system with balking, reneging and synchronous vacations,, in, (2009), 165.   Google Scholar

[23]

D. Yue and W. Yue, Block-partioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns,, Journal of Industrial and Management Optimization, 5 (2009), 417.   Google Scholar

[24]

M. Zhang and Z. Hou, Performance analysis of MAP/G/1 queue with working vacations and vacation interruption,, Applied Mathematical Modelling, 35 (2011), 1551.  doi: 10.1016/j.apm.2010.09.031.  Google Scholar

show all references

References:
[1]

R. O. Al-Seedy, S. A. El-Shehawy, A. A. El-Sherbiny and S. I. Ammar, Transient solution of the M/M/c queue with balking and reneging,, Computers and Mathematics with Applications, 57 (2009), 1280.  doi: 10.1016/j.camwa.2009.01.017.  Google Scholar

[2]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[3]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1017/S0269964808000296.  Google Scholar

[4]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Operations Research Letters, 33 (2005), 201.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[5]

F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers,, Advances in Applied Probability, 16 (1984), 887.  doi: 10.2307/1427345.  Google Scholar

[6]

A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple vacation-analytic analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701.  doi: 10.1016/j.apm.2006.05.010.  Google Scholar

[7]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[8]

T. Bonald and J. Roberts, Performance modeling of elastic traffic in overload,, ACM Sigmetrics Performance Evaluation Review, 29 (2001), 342.  doi: 10.1145/384268.378845.  Google Scholar

[9]

O. J. Boxma and P. R. de Waal, Multiserver queues with impatient customers,, in, (1994), 743.   Google Scholar

[10]

D. J. Daley, General customer impatience in the queue GI/G/1,, Journal of Applied Probability, 2 (1965), 186.   Google Scholar

[11]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreliable queue,, European Journal of Operational Research, 203 (2010), 143.  doi: 10.1016/j.ejor.2009.07.014.  Google Scholar

[12]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutorial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.   Google Scholar

[13]

E. R. Obert, Reneging phenomenon of single channel queues,, Mathematics of Operations Research, 4 (1979), 162.   Google Scholar

[14]

C. Palm, Methods of judging the annoyance caused by congestion,, Tele., 4 (1953), 189.   Google Scholar

[15]

N. Perel and U. Yechiali, Queues with slow servers and impatient customers,, European Journal of Operational Research, 201 (2010), 247.  doi: 10.1016/j.ejor.2009.02.024.  Google Scholar

[16]

Y. Sakuma, A. Inoie, K. Kawanishi and M. Miyazawa, Tail asymptotics for waiting time distribution of an M/M/$s$ queue with general impatient time,, Journal of Industrial and Management Optimization, 7 (2011), 593.   Google Scholar

[17]

L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[18]

L. Takacs, A single-server queue with limited virtual waiting time,, Journal of Applied Probability, 11 (1974), 612.  doi: 10.2307/3212710.  Google Scholar

[19]

B. Van Houdt, R. B. Lenin and C. Blonia, Delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue with age-dependent service times,, Queueing Systems, 45 (2003), 59.  doi: 10.1023/A:1025695818046.  Google Scholar

[20]

D. Wu and H. Takagi, M/G/1 queue with multiple working vacations,, Performance Evaluation, 63 (2006), 654.  doi: 10.1016/j.peva.2005.05.005.  Google Scholar

[21]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[22]

D. Yue and W. Yue, Analysis of M/M/$c$/N queueing system with balking, reneging and synchronous vacations,, in, (2009), 165.   Google Scholar

[23]

D. Yue and W. Yue, Block-partioning matrix solution of M/M/R/N queueing system with balking, reneging and server breakdowns,, Journal of Industrial and Management Optimization, 5 (2009), 417.   Google Scholar

[24]

M. Zhang and Z. Hou, Performance analysis of MAP/G/1 queue with working vacations and vacation interruption,, Applied Mathematical Modelling, 35 (2011), 1551.  doi: 10.1016/j.apm.2010.09.031.  Google Scholar

[1]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[2]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[5]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[6]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[7]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[8]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[9]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[10]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[11]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[12]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[13]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[14]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[15]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[16]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[17]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[18]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[19]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[20]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (149)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]