Citation: |
[1] |
I. Abate and W. Whitt, The Fourier-series method for inverting transforms of probability distributions, Queueing Systems, 10 (1992), 5-87.doi: 10.1007/BF01158520. |
[2] |
S. Ahn and A. L. Badescu, On the analysis of the Gerber-Shiu discounted penalty function for risk processes with Markovian arrivals, Insurance Mathematics & Economics, 41 (2007), 234-249.doi: 10.1016/j.insmatheco.2006.10.017. |
[3] |
S. Ahn, A. L. Badescu and V. Ramaswami, Time dependent analysis of finite buffer fluid flows and risk models with a dividend barrier, Queueing System, 55 (2007), 207-222.doi: 10.1007/s11134-007-9017-x. |
[4] |
S. Asmussen, "Ruin Probabilities,'' World Scientific Publishing, 2000. |
[5] |
A. Badescu and D. Landriault, Applications of fluid flow matrix analytic methods in ruin theory-a review, Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie a-Matematicas, 103 (2009), 353-372. |
[6] |
A. L. Badescu, E. K. Cheung and D. Randriault, Dependent risk model with bivariate phase-type distributions, J. Appl. Prob., 46 (2009), 113-131.doi: 10.1239/jap/1238592120. |
[7] |
S. X. Cheng, H. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model, Insurance Mathematics & Economics, 26 (2000), 239-250.doi: 10.1016/S0167-6687(99)00053-0. |
[8] |
Y. B. Cheng, Q. H. Tang and H. L. Yang, Approximations for moments of deficit at ruin with exponential and subexponential claims, Statistics & Probability Letters, 59 (2002), 367-378.doi: 10.1016/S0167-7152(02)00234-1. |
[9] |
S. N. Chiu and C. C. Yin, The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion, Insurance Mathematics & Economics, 33 (2003), 59-66.doi: 10.1016/S0167-6687(03)00143-4. |
[10] |
H. Cossette, D. Landriault and E. Marceau, Ruin probabilities in the discrete time renewal risk model, Insurance Mathematics & Economics, 38 (2006), 309-323.doi: 10.1016/j.insmatheco.2005.09.005. |
[11] |
H. Cossette, E. Marceau and F. Toureille, Risk models based on time series for count random variables, Insurance Mathematics & Economics, 48 (2011), 19-28.doi: 10.1016/j.insmatheco.2010.08.007. |
[12] |
H. U. Gerber and E. S. W. Shiu, The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin, Insurance Mathematics & Economics, 21 (1997), 129-137.doi: 10.1016/S0167-6687(97)00027-9. |
[13] |
B. Kim, H. S. Kim and J. Kim, A risk model with paying dividends and random environment, Insurance Mathematics & Economics, 42 (2008), 717-726.doi: 10.1016/j.insmatheco.2007.08.001. |
[14] |
M. F. Neuts, "Matrix Geometric Solutions in Stochastic Models: An Algorithmic Approach,'' Johns Hopkins University Press, Baltimore, 1981. |
[15] |
G. Latouche and V. Ramaswami, "Introduction to Matrix Analytic Methods in Stochastic Modeling,'' American Statistic Association and the Society for Industrial and Applied Mathematics, 1999.doi: 10.1137/1.9780898719734. |
[16] |
D. Landriault, On a generalization of the expected discounted penalty function in a discrete-time insurance risk model, Applied Stochastic Models in Business and Industry, 24 (2008), 525-539.doi: 10.1002/asmb.713. |
[17] |
S. M. Li, Y. Lu and J. Garrido, A review of discrete-time risk models, Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie a-Matematicas, 103 (2009), 321-337. |
[18] |
X. S. Lin and G. E. Willmot, Analysis of a defective renewal equation arising in ruin theory, Insurance Mathematics & Economics, 25 (1999), 63-84.doi: 10.1016/S0167-6687(99)00026-8. |
[19] |
X. S. Lin and K. P. Pavlova, The compound Poisson risk model witha threshold dividend strategy, Insurance Mathematics & Economics, 38 (2006), 57-80.doi: 10.1016/j.insmatheco.2005.08.001. |
[20] |
X. S. Lin and G. E. Willmot, The moments of the time of ruin, the surplus before ruin, and the deficit at ruin, Insurance Mathematics & Economics, 27 (2000), 19-44.doi: 10.1016/S0167-6687(00)00038-X. |
[21] |
Y. Lu and S. M. Li, The Markovian regime-switching risk model with a threshold dividend strategy, Insurance Mathematics & Economics, 44 (2009), 296-303.doi: 10.1016/j.insmatheco.2008.04.004. |
[22] |
M. F. Neuts, "Matrix Geometric Solutions in Stochastic Models: An Algorithmic Approach,'' Johns Hopkins University Press, Baltimore, 1981. |
[23] |
M. F. Neuts, "Structured Stochastic Matrices of M/G/1 Type and Their Applications,'' Marcel Dekker, New York, NY, 1989. |
[24] |
K. P. Pavlova and G. E. Willmot, The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function, Insurance Mathematics & Economics, 33 (2003), 440-440. |
[25] |
M. S. Sgibnev, The matrix analogue of the Blackwell renewal theorem on the real line, Sbornik: Mathematics, 197 (2006), 69-86.doi: 10.1070/SM2006v197n03ABEH003762. |
[26] |
H. Yang, Z. M. Zhang and C. M. Lan, Ruin problems in a discrete Markov risk model, Statistics & Probability Letters, 79 (2009), 21-28.doi: 10.1016/j.spl.2008.07.009. |
[27] |
K. C. Yuen and J. Y. Guo, Ruin probabilities for time-correlated claims in the compound binomial model, Insurance Mathematics & Economics, 29 (2001), 47-57.doi: 10.1016/S0167-6687(01)00071-3. |
[28] |
J. Zhu and H. Yang, Ruin theory for a Markov regime-switching model under a threshold dividend strategy, Insurance Mathematics & Economics, 42 (2008), 311-318.doi: 10.1016/j.insmatheco.2007.03.004. |