-
Previous Article
M/M/c multiple synchronous vacation model with gated discipline
- JIMO Home
- This Issue
-
Next Article
G/M/1 type structure of a risk model with general claim sizes in a Markovian environment
Stochastic decomposition in discrete-time queues with generalized vacations and applications
1. | SMACS Research Group, Ghent University, St.-Pietersnieuwstraat 41, 9000 Gent |
References:
[1] |
S. C. Borst and O. J. Boxma, Polling models with and without switchover times,, Operations Research, 45 (1997), 536.
doi: 10.1287/opre.45.4.536. |
[2] |
O. J. Boxma and W. P. Groenendijk, Pseudo-conservation laws in cyclic-service systems,, Journal of Applied Probability, 24 (1987), 949.
doi: 10.2307/3214218. |
[3] |
H. Bruneel, Performance of discrete-time queueing systems,, Computers Operations Research, 20 (1993), 303.
doi: 10.1016/0305-0548(93)90006-5. |
[4] |
R. B. Cooper, "Introduction to Queueing Theory,'', North-Holland (Elsevier), (1981).
|
[5] |
S. De Clercq, B. Steyaert and H. Bruneel, Analysis of a multi-class discrete-time queueing system under the slot-bound priority rule,, Proceedings of the 6th St. Petersburg Workshop on Simulation, (2009), 827. Google Scholar |
[6] |
S. W. Fuhrmann and R. B. Cooper, Stochastic decompositions in the M/G/1 queue with generalized vacations,, Operations Research, 33 (1985), 1117.
doi: 10.1287/opre.33.5.1117. |
[7] |
S. Halfin, Batch delays versus customer delays,, The Bell System Technical Journal, 62 (1983), 2011. Google Scholar |
[8] |
L. Kleinrock, "Queueing Systems, Volume I: Theory,'', Wiley, (1975). Google Scholar |
[9] |
K. Laevens and H. Bruneel, Analysis of a single-wavelength optical buffer,, Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, (2003), 1. Google Scholar |
[10] |
L. Lakatos, Cyclic-waiting systems,, Cybernetics and Systems Analysis, 46 (2010), 477.
doi: 10.1007/s10559-010-9222-1. |
[11] |
Z. Liang and S. Xiao, Performance evaluation of single-wavelength fiber delay line buffer with finite waiting places,, Journal of Lightwave Technology, 26 (2008), 520.
doi: 10.1109/JLT.2007.915200. |
[12] |
J. Loris-Teghem, On a decomposition result for a class of vacation queueing systems,, Journal of Applied Probability, 27 (1990), 227.
doi: 10.2307/3214611. |
[13] |
W. Rogiest, J. Lambert, D. Fiems, B. Van Houdt, H. Bruneel and C. Blondia, A unified model for synchronous and asynchronous FDL buffers allowing closed-form solution,, Performance Evaluation, 66 (2009), 343.
doi: 10.1016/j.peva.2009.01.002. |
[14] |
W. Rogiest, K. Laevens, J. Walraevens and H. Bruneel, Analyzing a degenerate buffer with general inter-arrival and service times in discrete-time,, Queueing Systems, 56 (2007), 203.
doi: 10.1007/s11134-007-9032-y. |
[15] |
H. Takagi, "Queueing Analysis, Volume 3: Discrete-Time Systems,'', North-Holland (Elsevier), (1991).
|
[16] |
H. Takagi, "Analysis of Polling Systems,'', The MIT Press, (1986).
|
[17] |
J. Walraevens, B. Steyaert and H. Bruneel, Performance analysis of the system contents in a discrete-time non-preemptive priority queue with general service times,, Belgian Journal of Operations Research (JORBEL), 40 (2001), 91.
|
show all references
References:
[1] |
S. C. Borst and O. J. Boxma, Polling models with and without switchover times,, Operations Research, 45 (1997), 536.
doi: 10.1287/opre.45.4.536. |
[2] |
O. J. Boxma and W. P. Groenendijk, Pseudo-conservation laws in cyclic-service systems,, Journal of Applied Probability, 24 (1987), 949.
doi: 10.2307/3214218. |
[3] |
H. Bruneel, Performance of discrete-time queueing systems,, Computers Operations Research, 20 (1993), 303.
doi: 10.1016/0305-0548(93)90006-5. |
[4] |
R. B. Cooper, "Introduction to Queueing Theory,'', North-Holland (Elsevier), (1981).
|
[5] |
S. De Clercq, B. Steyaert and H. Bruneel, Analysis of a multi-class discrete-time queueing system under the slot-bound priority rule,, Proceedings of the 6th St. Petersburg Workshop on Simulation, (2009), 827. Google Scholar |
[6] |
S. W. Fuhrmann and R. B. Cooper, Stochastic decompositions in the M/G/1 queue with generalized vacations,, Operations Research, 33 (1985), 1117.
doi: 10.1287/opre.33.5.1117. |
[7] |
S. Halfin, Batch delays versus customer delays,, The Bell System Technical Journal, 62 (1983), 2011. Google Scholar |
[8] |
L. Kleinrock, "Queueing Systems, Volume I: Theory,'', Wiley, (1975). Google Scholar |
[9] |
K. Laevens and H. Bruneel, Analysis of a single-wavelength optical buffer,, Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, (2003), 1. Google Scholar |
[10] |
L. Lakatos, Cyclic-waiting systems,, Cybernetics and Systems Analysis, 46 (2010), 477.
doi: 10.1007/s10559-010-9222-1. |
[11] |
Z. Liang and S. Xiao, Performance evaluation of single-wavelength fiber delay line buffer with finite waiting places,, Journal of Lightwave Technology, 26 (2008), 520.
doi: 10.1109/JLT.2007.915200. |
[12] |
J. Loris-Teghem, On a decomposition result for a class of vacation queueing systems,, Journal of Applied Probability, 27 (1990), 227.
doi: 10.2307/3214611. |
[13] |
W. Rogiest, J. Lambert, D. Fiems, B. Van Houdt, H. Bruneel and C. Blondia, A unified model for synchronous and asynchronous FDL buffers allowing closed-form solution,, Performance Evaluation, 66 (2009), 343.
doi: 10.1016/j.peva.2009.01.002. |
[14] |
W. Rogiest, K. Laevens, J. Walraevens and H. Bruneel, Analyzing a degenerate buffer with general inter-arrival and service times in discrete-time,, Queueing Systems, 56 (2007), 203.
doi: 10.1007/s11134-007-9032-y. |
[15] |
H. Takagi, "Queueing Analysis, Volume 3: Discrete-Time Systems,'', North-Holland (Elsevier), (1991).
|
[16] |
H. Takagi, "Analysis of Polling Systems,'', The MIT Press, (1986).
|
[17] |
J. Walraevens, B. Steyaert and H. Bruneel, Performance analysis of the system contents in a discrete-time non-preemptive priority queue with general service times,, Belgian Journal of Operations Research (JORBEL), 40 (2001), 91.
|
[1] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[2] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[3] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[4] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[5] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[6] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[7] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[8] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[9] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[10] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[11] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[12] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[13] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[14] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[15] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[16] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[17] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[18] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[19] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[20] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]