October  2012, 8(4): 969-986. doi: 10.3934/jimo.2012.8.969

Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application

1. 

Sungkyunkwan University, Department of Systems Management Engineering, Suwon, 440-746, South Korea, South Korea, South Korea

2. 

Dongguk Univeristy-SEOUL, Department of Business Administration, Seoul, 110-715, South Korea

3. 

Inha University, Institute for Information and Electronics Research, Incheon, 402-751, South Korea

Received  September 2011 Revised  July 2012 Published  September 2012

The checkpoint and rollback scheme is a useful fault-tolerance method for mobile devices in wireless environments. Since battery power is one of the most critical resources for mobile devices, it is important to identify optimal checkpoint intervals that minimize power consumption. In this paper, we propose a method that minimizes power consumption in wireless remote checkpoint environments by considering environmental parameters such as device failure rate, wireless link error rate, and checkpoint overhead. To evaluate the proposed solution, we conducted analytical estimations, simulations, and experimental measurements in a real test-bed.
Citation: Sung-Hwa Lim, Se Won Lee, Byoung-Hoon Lee, Seongil Lee, Ho Woo Lee. Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application. Journal of Industrial & Management Optimization, 2012, 8 (4) : 969-986. doi: 10.3934/jimo.2012.8.969
References:
[1]

S. Biswas and S. Neogy, A low overhead checkpointing scheme for mobile computing systems,, in, (2007), 700.   Google Scholar

[2]

S. Baek and B. D. Choi, Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network,, J. Industrial and Management Optimization, 5 (2009), 481.  doi: 10.3934/jimo.2009.5.481.  Google Scholar

[3]

R. C. Baumann, "Soft Errors in Commercial Semiconductor Technology: Overview and Scaling Trends,", in, (2002).   Google Scholar

[4]

K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig, Analytic models for rollback and recovery strategies in data base systems,, IEEE Trans. Software Eng., 1 (1975), 100.   Google Scholar

[5]

I.-R. Chen, B. Gu, S. E. George and S.-T. Cheng, On failure recoverability of client-server applications in mobile wireless environments,, IEEE Trans. on Reliability, 54 (2005), 115.  doi: 10.1109/TR.2004.837518.  Google Scholar

[6]

C. Constantinescu, Trends and challenges in VLSI circuit reliability,, IEEE Micro, 23 (2003), 14.  doi: 10.1109/MM.2003.1225959.  Google Scholar

[7]

J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps,, Future Generation Computer Systems, 22 (2006), 303.  doi: 10.1016/j.future.2004.11.016.  Google Scholar

[8]

S. Gadiraju and V. Kumar, Recovery in the mobile wireless environment using mobile agents,, IEEE Transactions on Mobile Computing, 3 (2004), 180.  doi: 10.1109/TMC.2004.13.  Google Scholar

[9]

K.-H. Han, J.-H. Kim, Y.-B. Ko and W.-S. Yoon, An energy efficient broadcasting for mobile devices using a cache scheme,, in Lecture Notes in Computer Science (Proc. ICCS 2004), (2004), 598.   Google Scholar

[10]

W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks,", in proceedings of Hawaii International Conference on System Sciences, (2000).   Google Scholar

[11]

P. Kumar, P. Gupta and A. K. Solanki, Dealing with rrequent aborts in minimum-process coordinated checkpointing algorithm for mobile distributed systems,, Int. J. Computer Applications, 3 (2010), 7.   Google Scholar

[12]

G.-H. Li and H. Wang, A novel min-process checkpointing scheme for mobile computing systems,, J. Systems Architecture, 51 (2005), 45.  doi: 10.1016/j.sysarc.2004.07.001.  Google Scholar

[13]

S.-H. Lim, S. W. Lee, B.-H. Lee, S. Lee and H. W. Lee, Energy-aware checkpoint intervals in error-prone mobile networks,, in proceedings of QTNA, 2011 (2011), 128.   Google Scholar

[14]

S.-H. Lim, S. W. Lee, B.-H. Lee and S. Lee, Power-aware optimal checkpoint intervals for mobile consumer devices,, IEEE Trans. Consumer Electronics, 4 (2011), 1637.  doi: 10.1109/TCE.2011.6131136.  Google Scholar

[15]

B. McFarland and M. Wong, The family dynamics of 802.11,, ACM Queue, 1 (2003), 28.  doi: 10.1145/846057.864025.  Google Scholar

[16]

D. K. Pradhan, P. Krishna and N. H. Vaidya, Recoverable mobile environment: design and trade-off analysis,, in proceedings of the 26th Int Symp. on Fault Tolerant Computing Systems, (1996), 16.   Google Scholar

[17]

S. M. Ross, "Stochastic Processes,", 2nd edition, (1996).   Google Scholar

[18]

N. H. Vaidya, On checkpoint latency,, in, (1995), 60.   Google Scholar

[19]

N. T. Vijaykumar, I. Pomeranz and K. Cheng, Transient-fault recovery using simultaneous multithreading,, in, (2002), 87.   Google Scholar

[20]

J. W. Young, A first order approximation to the optimum checkpoint interval,, Communications on the ACM, 17 (1974), 530.  doi: 10.1145/361147.361115.  Google Scholar

[21]

Z. Zhang, D.-C. Zuo, Y.-W. Ci and X.-Z. Yang, The checkpoint interval optimization of kernel-level rollback recovery based on the embedded mobile computing system,, in proceedings of IEEE International Conference on Computer and Information Technology Workshops, (2008), 521.   Google Scholar

[22]

, "Mobile DRAM Power-Saving Features and Power Calculations,", Technical note TN-46-12, (2009), 46.   Google Scholar

[23]

, CW1200 : 802.11n dual-band WLAN system-on-chip,, Data Sheet, ().   Google Scholar

[24]

, "Power Consumption and Energy Efficiency Comparisons of WLAN Products,", White Paper, (2003).   Google Scholar

[25]

, "HC25 Hardware Interface Description,", Date Sheet v.1.0, (2007).   Google Scholar

show all references

References:
[1]

S. Biswas and S. Neogy, A low overhead checkpointing scheme for mobile computing systems,, in, (2007), 700.   Google Scholar

[2]

S. Baek and B. D. Choi, Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network,, J. Industrial and Management Optimization, 5 (2009), 481.  doi: 10.3934/jimo.2009.5.481.  Google Scholar

[3]

R. C. Baumann, "Soft Errors in Commercial Semiconductor Technology: Overview and Scaling Trends,", in, (2002).   Google Scholar

[4]

K. M. Chandy, J. C. Browne, C. W. Dissly and W. R. Uhrig, Analytic models for rollback and recovery strategies in data base systems,, IEEE Trans. Software Eng., 1 (1975), 100.   Google Scholar

[5]

I.-R. Chen, B. Gu, S. E. George and S.-T. Cheng, On failure recoverability of client-server applications in mobile wireless environments,, IEEE Trans. on Reliability, 54 (2005), 115.  doi: 10.1109/TR.2004.837518.  Google Scholar

[6]

C. Constantinescu, Trends and challenges in VLSI circuit reliability,, IEEE Micro, 23 (2003), 14.  doi: 10.1109/MM.2003.1225959.  Google Scholar

[7]

J. T. Daly, A higher order estimate of the optimum checkpoint interval for restart dumps,, Future Generation Computer Systems, 22 (2006), 303.  doi: 10.1016/j.future.2004.11.016.  Google Scholar

[8]

S. Gadiraju and V. Kumar, Recovery in the mobile wireless environment using mobile agents,, IEEE Transactions on Mobile Computing, 3 (2004), 180.  doi: 10.1109/TMC.2004.13.  Google Scholar

[9]

K.-H. Han, J.-H. Kim, Y.-B. Ko and W.-S. Yoon, An energy efficient broadcasting for mobile devices using a cache scheme,, in Lecture Notes in Computer Science (Proc. ICCS 2004), (2004), 598.   Google Scholar

[10]

W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, "Energy-Efficient Communication Protocol for Wireless Microsensor Networks,", in proceedings of Hawaii International Conference on System Sciences, (2000).   Google Scholar

[11]

P. Kumar, P. Gupta and A. K. Solanki, Dealing with rrequent aborts in minimum-process coordinated checkpointing algorithm for mobile distributed systems,, Int. J. Computer Applications, 3 (2010), 7.   Google Scholar

[12]

G.-H. Li and H. Wang, A novel min-process checkpointing scheme for mobile computing systems,, J. Systems Architecture, 51 (2005), 45.  doi: 10.1016/j.sysarc.2004.07.001.  Google Scholar

[13]

S.-H. Lim, S. W. Lee, B.-H. Lee, S. Lee and H. W. Lee, Energy-aware checkpoint intervals in error-prone mobile networks,, in proceedings of QTNA, 2011 (2011), 128.   Google Scholar

[14]

S.-H. Lim, S. W. Lee, B.-H. Lee and S. Lee, Power-aware optimal checkpoint intervals for mobile consumer devices,, IEEE Trans. Consumer Electronics, 4 (2011), 1637.  doi: 10.1109/TCE.2011.6131136.  Google Scholar

[15]

B. McFarland and M. Wong, The family dynamics of 802.11,, ACM Queue, 1 (2003), 28.  doi: 10.1145/846057.864025.  Google Scholar

[16]

D. K. Pradhan, P. Krishna and N. H. Vaidya, Recoverable mobile environment: design and trade-off analysis,, in proceedings of the 26th Int Symp. on Fault Tolerant Computing Systems, (1996), 16.   Google Scholar

[17]

S. M. Ross, "Stochastic Processes,", 2nd edition, (1996).   Google Scholar

[18]

N. H. Vaidya, On checkpoint latency,, in, (1995), 60.   Google Scholar

[19]

N. T. Vijaykumar, I. Pomeranz and K. Cheng, Transient-fault recovery using simultaneous multithreading,, in, (2002), 87.   Google Scholar

[20]

J. W. Young, A first order approximation to the optimum checkpoint interval,, Communications on the ACM, 17 (1974), 530.  doi: 10.1145/361147.361115.  Google Scholar

[21]

Z. Zhang, D.-C. Zuo, Y.-W. Ci and X.-Z. Yang, The checkpoint interval optimization of kernel-level rollback recovery based on the embedded mobile computing system,, in proceedings of IEEE International Conference on Computer and Information Technology Workshops, (2008), 521.   Google Scholar

[22]

, "Mobile DRAM Power-Saving Features and Power Calculations,", Technical note TN-46-12, (2009), 46.   Google Scholar

[23]

, CW1200 : 802.11n dual-band WLAN system-on-chip,, Data Sheet, ().   Google Scholar

[24]

, "Power Consumption and Energy Efficiency Comparisons of WLAN Products,", White Paper, (2003).   Google Scholar

[25]

, "HC25 Hardware Interface Description,", Date Sheet v.1.0, (2007).   Google Scholar

[1]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[2]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[3]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[4]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[5]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[6]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[7]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[8]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[9]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[10]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[11]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[12]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (2)

[Back to Top]