• Previous Article
    A modified differential evolution based solution technique for economic dispatch problems
  • JIMO Home
  • This Issue
  • Next Article
    Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application
October  2012, 8(4): 987-1015. doi: 10.3934/jimo.2012.8.987

A model for buyer and supplier coordination and information sharing in order-up-to systems

1. 

Department of Industrial and Management Engineering, Hanyang University, Erica Campus, Ansan, South Korea

2. 

Department of Industrial and Management Engineering, Graduate School, Hanyang University, Seoul, South Korea

Received  January 2011 Revised  May 2012 Published  September 2012

This study analyzed a logistics system consisting of a supplier that produces and delivers a single product and a buyer that receives and sells the product to retail customers. In this type of logistics system, the supplier and the buyer agree upon a contract specifying that the supplier will deliver the amount of product needed to increase the inventory of the buyer up to a predetermined order-up-to level at the beginning of each time period. A mathematical model was developed to construct methods to find the cost minimizing cycle lengths for both parties and the order-up-to level for the buyer. The proposed methods were tested for accuracy and execution speed in a variety of experimental settings. Analysis of the results revealed that the proposed methods determined the optimal control parameters for each party in a short time frame. Ultimately, a coordination mechanism based on a system-wide cost minimization policy was proposed to ensure that system-wide costs are minimized while, at the same time, both parties benefit from coordinating their efforts.
Citation: Jong Soo Kim, Won Chan Jeong. A model for buyer and supplier coordination and information sharing in order-up-to systems. Journal of Industrial & Management Optimization, 2012, 8 (4) : 987-1015. doi: 10.3934/jimo.2012.8.987
References:
[1]

R. Akella and R. Anupindi, Diversification under supply uncertainty,, Management Science, 39 (1993), 944.  doi: 10.1287/mnsc.39.8.944.  Google Scholar

[2]

A. Banerjee, A supplier's pricing model under a customer's economic purchasing policy,, Omega, 14 (1986), 409.  doi: 10.1016/0305-0483(86)90082-4.  Google Scholar

[3]

M. Bendaya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time,, International Journal of Production Economics, 92 (2004), 75.  doi: 10.1016/j.ijpe.2003.09.012.  Google Scholar

[4]

J. F. Crowther, Rationale for quantity discounts,, Harvard Business Review, 42 (1964), 121.   Google Scholar

[5]

A. Eynan and D. H. Kropp, Effective and simple EOQ-like solutions for stochastic demand periodic review systems,, European Journal of Operational Research, 180 (2007), 1135.  doi: 10.1016/j.ejor.2006.05.015.  Google Scholar

[6]

S. K. Goyal, Note-Comment on: A generalized quantity discount pricing model to increase supplier's profit,, Management Science, 33 (1987), 1635.  doi: 10.1287/mnsc.33.12.1635.  Google Scholar

[7]

S. K. Goyal, A one vendor multi buyer integrated inventory model: A comment,, European Journal of Operational Research, 82 (1995), 209.  doi: 10.1016/0377-2217(93)E0357-4.  Google Scholar

[8]

H. Gurnani, A study of quantity discount pricing models with different ordering structures: Order coordination, order consolidation and multi-tier ordering hierarchy,, International Journal of Production Economics, 72 (2001), 203.  doi: 10.1016/S0925-5273(00)00159-6.  Google Scholar

[9]

R. M. Hill, The single vendor, single buyer integrated production inventory model with a generalized policy,, European Journal of Operational Research, 97 (1997), 493.  doi: 10.1016/S0377-2217(96)00267-6.  Google Scholar

[10]

T. D. Klastorin, K. Moinzadeh and J. Son, Coordinating orders in supply chains through price discounts,, IIE Transactions, 34 (2002), 679.  doi: 10.1080/07408170208928904.  Google Scholar

[11]

M. Khouja, Optimizing inventory decisions in a multistage multi customer supply chain,, Transportation Research Part E: Logistics and Transportation Review, 39 (2003), 193.  doi: 10.1016/S1366-5545(02)00036-4.  Google Scholar

[12]

B. W. Kim, J. M. Y. Leung, K. T. Park, G. Zhang and S. C. Lee, Configuring a manufacturing firm's supply network with multiple supplier,, IIE transactions, 34 (2002), 663.  doi: 10.1080/07408170208928903.  Google Scholar

[13]

L. Lu, Theory and methodology: A one vendor multi buyer integrated inventory model,, European Journal of Operational Research, 81 (1995), 312.  doi: 10.1016/0377-2217(93)E0253-T.  Google Scholar

[14]

A. K. Misra, Selective discount for supplier buyer coordination using common replenishment epochs,, European Journal of Operational Research, 153 (2004), 751.  doi: 10.1016/S0377-2217(02)00811-1.  Google Scholar

[15]

J. P. Monahan, A quantity discount pricing model to increase vendor profits,, Management Science, 30 (1984), 720.  doi: 10.1287/mnsc.30.6.720.  Google Scholar

[16]

C. L. Munson and M. J. Rosenblatt, Coordinating a three level supply chain with quantity discounts,, IIE Transactions, 33 (2001), 371.  doi: 10.1080/07408170108936836.  Google Scholar

[17]

L. Y. Ouyang, K. S. Wu and C. H. Ho, Integrated vendoruyer cooperative models with stochastic demand in controllable lead time,, International Journal of Production Economics, 92 (2004), 255.  doi: 10.1016/j.ijpe.2003.10.016.  Google Scholar

[18]

M. J. Rosenblatt and H. L. Lee, Improving profitability with quantity discounts under fixed demand,, IIE Transactions, 17 (1985), 388.  doi: 10.1080/07408178508975319.  Google Scholar

[19]

S. M. Ross, "Stochastic Processes,", 2nd edition, (1995).   Google Scholar

[20]

S. P. Sarma, D. Acharya and S. K. Goyal, Buyer vendor coordination models in supply chain management,, European Journal of Operational Research, 175 (2006), 1.  doi: 10.1016/j.ejor.2005.08.006.  Google Scholar

[21]

M. Sharafali and H. C. Co, Some models for understanding the cooperation between the supplier and the buyer,, International Journal of Production Research, 38 (2000), 3425.  doi: 10.1080/002075400422734.  Google Scholar

[22]

E. A. Silver, D.F. Pyke and R. Peterson, "Inventory Management and Production Planning and Scheduling,", 3nd edition, (1998).   Google Scholar

[23]

S. Viswanathan and R. Piplani, Coordinating supply chain inventories through common replenishment epoch,, European Journal of Operational Research, 129 (2001), 277.  doi: 10.1016/S0377-2217(00)00225-3.  Google Scholar

show all references

References:
[1]

R. Akella and R. Anupindi, Diversification under supply uncertainty,, Management Science, 39 (1993), 944.  doi: 10.1287/mnsc.39.8.944.  Google Scholar

[2]

A. Banerjee, A supplier's pricing model under a customer's economic purchasing policy,, Omega, 14 (1986), 409.  doi: 10.1016/0305-0483(86)90082-4.  Google Scholar

[3]

M. Bendaya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time,, International Journal of Production Economics, 92 (2004), 75.  doi: 10.1016/j.ijpe.2003.09.012.  Google Scholar

[4]

J. F. Crowther, Rationale for quantity discounts,, Harvard Business Review, 42 (1964), 121.   Google Scholar

[5]

A. Eynan and D. H. Kropp, Effective and simple EOQ-like solutions for stochastic demand periodic review systems,, European Journal of Operational Research, 180 (2007), 1135.  doi: 10.1016/j.ejor.2006.05.015.  Google Scholar

[6]

S. K. Goyal, Note-Comment on: A generalized quantity discount pricing model to increase supplier's profit,, Management Science, 33 (1987), 1635.  doi: 10.1287/mnsc.33.12.1635.  Google Scholar

[7]

S. K. Goyal, A one vendor multi buyer integrated inventory model: A comment,, European Journal of Operational Research, 82 (1995), 209.  doi: 10.1016/0377-2217(93)E0357-4.  Google Scholar

[8]

H. Gurnani, A study of quantity discount pricing models with different ordering structures: Order coordination, order consolidation and multi-tier ordering hierarchy,, International Journal of Production Economics, 72 (2001), 203.  doi: 10.1016/S0925-5273(00)00159-6.  Google Scholar

[9]

R. M. Hill, The single vendor, single buyer integrated production inventory model with a generalized policy,, European Journal of Operational Research, 97 (1997), 493.  doi: 10.1016/S0377-2217(96)00267-6.  Google Scholar

[10]

T. D. Klastorin, K. Moinzadeh and J. Son, Coordinating orders in supply chains through price discounts,, IIE Transactions, 34 (2002), 679.  doi: 10.1080/07408170208928904.  Google Scholar

[11]

M. Khouja, Optimizing inventory decisions in a multistage multi customer supply chain,, Transportation Research Part E: Logistics and Transportation Review, 39 (2003), 193.  doi: 10.1016/S1366-5545(02)00036-4.  Google Scholar

[12]

B. W. Kim, J. M. Y. Leung, K. T. Park, G. Zhang and S. C. Lee, Configuring a manufacturing firm's supply network with multiple supplier,, IIE transactions, 34 (2002), 663.  doi: 10.1080/07408170208928903.  Google Scholar

[13]

L. Lu, Theory and methodology: A one vendor multi buyer integrated inventory model,, European Journal of Operational Research, 81 (1995), 312.  doi: 10.1016/0377-2217(93)E0253-T.  Google Scholar

[14]

A. K. Misra, Selective discount for supplier buyer coordination using common replenishment epochs,, European Journal of Operational Research, 153 (2004), 751.  doi: 10.1016/S0377-2217(02)00811-1.  Google Scholar

[15]

J. P. Monahan, A quantity discount pricing model to increase vendor profits,, Management Science, 30 (1984), 720.  doi: 10.1287/mnsc.30.6.720.  Google Scholar

[16]

C. L. Munson and M. J. Rosenblatt, Coordinating a three level supply chain with quantity discounts,, IIE Transactions, 33 (2001), 371.  doi: 10.1080/07408170108936836.  Google Scholar

[17]

L. Y. Ouyang, K. S. Wu and C. H. Ho, Integrated vendoruyer cooperative models with stochastic demand in controllable lead time,, International Journal of Production Economics, 92 (2004), 255.  doi: 10.1016/j.ijpe.2003.10.016.  Google Scholar

[18]

M. J. Rosenblatt and H. L. Lee, Improving profitability with quantity discounts under fixed demand,, IIE Transactions, 17 (1985), 388.  doi: 10.1080/07408178508975319.  Google Scholar

[19]

S. M. Ross, "Stochastic Processes,", 2nd edition, (1995).   Google Scholar

[20]

S. P. Sarma, D. Acharya and S. K. Goyal, Buyer vendor coordination models in supply chain management,, European Journal of Operational Research, 175 (2006), 1.  doi: 10.1016/j.ejor.2005.08.006.  Google Scholar

[21]

M. Sharafali and H. C. Co, Some models for understanding the cooperation between the supplier and the buyer,, International Journal of Production Research, 38 (2000), 3425.  doi: 10.1080/002075400422734.  Google Scholar

[22]

E. A. Silver, D.F. Pyke and R. Peterson, "Inventory Management and Production Planning and Scheduling,", 3nd edition, (1998).   Google Scholar

[23]

S. Viswanathan and R. Piplani, Coordinating supply chain inventories through common replenishment epoch,, European Journal of Operational Research, 129 (2001), 277.  doi: 10.1016/S0377-2217(00)00225-3.  Google Scholar

[1]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[2]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[7]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[8]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[9]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[10]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[11]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[12]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[13]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[14]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[15]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[16]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[17]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[18]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[19]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[20]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]