-
Previous Article
A modified differential evolution based solution technique for economic dispatch problems
- JIMO Home
- This Issue
-
Next Article
Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application
A model for buyer and supplier coordination and information sharing in order-up-to systems
1. | Department of Industrial and Management Engineering, Hanyang University, Erica Campus, Ansan, South Korea |
2. | Department of Industrial and Management Engineering, Graduate School, Hanyang University, Seoul, South Korea |
References:
[1] |
R. Akella and R. Anupindi, Diversification under supply uncertainty,, Management Science, 39 (1993), 944.
doi: 10.1287/mnsc.39.8.944. |
[2] |
A. Banerjee, A supplier's pricing model under a customer's economic purchasing policy,, Omega, 14 (1986), 409.
doi: 10.1016/0305-0483(86)90082-4. |
[3] |
M. Bendaya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time,, International Journal of Production Economics, 92 (2004), 75.
doi: 10.1016/j.ijpe.2003.09.012. |
[4] |
J. F. Crowther, Rationale for quantity discounts,, Harvard Business Review, 42 (1964), 121. Google Scholar |
[5] |
A. Eynan and D. H. Kropp, Effective and simple EOQ-like solutions for stochastic demand periodic review systems,, European Journal of Operational Research, 180 (2007), 1135.
doi: 10.1016/j.ejor.2006.05.015. |
[6] |
S. K. Goyal, Note-Comment on: A generalized quantity discount pricing model to increase supplier's profit,, Management Science, 33 (1987), 1635.
doi: 10.1287/mnsc.33.12.1635. |
[7] |
S. K. Goyal, A one vendor multi buyer integrated inventory model: A comment,, European Journal of Operational Research, 82 (1995), 209.
doi: 10.1016/0377-2217(93)E0357-4. |
[8] |
H. Gurnani, A study of quantity discount pricing models with different ordering structures: Order coordination, order consolidation and multi-tier ordering hierarchy,, International Journal of Production Economics, 72 (2001), 203.
doi: 10.1016/S0925-5273(00)00159-6. |
[9] |
R. M. Hill, The single vendor, single buyer integrated production inventory model with a generalized policy,, European Journal of Operational Research, 97 (1997), 493.
doi: 10.1016/S0377-2217(96)00267-6. |
[10] |
T. D. Klastorin, K. Moinzadeh and J. Son, Coordinating orders in supply chains through price discounts,, IIE Transactions, 34 (2002), 679.
doi: 10.1080/07408170208928904. |
[11] |
M. Khouja, Optimizing inventory decisions in a multistage multi customer supply chain,, Transportation Research Part E: Logistics and Transportation Review, 39 (2003), 193.
doi: 10.1016/S1366-5545(02)00036-4. |
[12] |
B. W. Kim, J. M. Y. Leung, K. T. Park, G. Zhang and S. C. Lee, Configuring a manufacturing firm's supply network with multiple supplier,, IIE transactions, 34 (2002), 663.
doi: 10.1080/07408170208928903. |
[13] |
L. Lu, Theory and methodology: A one vendor multi buyer integrated inventory model,, European Journal of Operational Research, 81 (1995), 312.
doi: 10.1016/0377-2217(93)E0253-T. |
[14] |
A. K. Misra, Selective discount for supplier buyer coordination using common replenishment epochs,, European Journal of Operational Research, 153 (2004), 751.
doi: 10.1016/S0377-2217(02)00811-1. |
[15] |
J. P. Monahan, A quantity discount pricing model to increase vendor profits,, Management Science, 30 (1984), 720.
doi: 10.1287/mnsc.30.6.720. |
[16] |
C. L. Munson and M. J. Rosenblatt, Coordinating a three level supply chain with quantity discounts,, IIE Transactions, 33 (2001), 371.
doi: 10.1080/07408170108936836. |
[17] |
L. Y. Ouyang, K. S. Wu and C. H. Ho, Integrated vendoruyer cooperative models with stochastic demand in controllable lead time,, International Journal of Production Economics, 92 (2004), 255.
doi: 10.1016/j.ijpe.2003.10.016. |
[18] |
M. J. Rosenblatt and H. L. Lee, Improving profitability with quantity discounts under fixed demand,, IIE Transactions, 17 (1985), 388.
doi: 10.1080/07408178508975319. |
[19] |
S. M. Ross, "Stochastic Processes,", 2nd edition, (1995).
|
[20] |
S. P. Sarma, D. Acharya and S. K. Goyal, Buyer vendor coordination models in supply chain management,, European Journal of Operational Research, 175 (2006), 1.
doi: 10.1016/j.ejor.2005.08.006. |
[21] |
M. Sharafali and H. C. Co, Some models for understanding the cooperation between the supplier and the buyer,, International Journal of Production Research, 38 (2000), 3425.
doi: 10.1080/002075400422734. |
[22] |
E. A. Silver, D.F. Pyke and R. Peterson, "Inventory Management and Production Planning and Scheduling,", 3nd edition, (1998). Google Scholar |
[23] |
S. Viswanathan and R. Piplani, Coordinating supply chain inventories through common replenishment epoch,, European Journal of Operational Research, 129 (2001), 277.
doi: 10.1016/S0377-2217(00)00225-3. |
show all references
References:
[1] |
R. Akella and R. Anupindi, Diversification under supply uncertainty,, Management Science, 39 (1993), 944.
doi: 10.1287/mnsc.39.8.944. |
[2] |
A. Banerjee, A supplier's pricing model under a customer's economic purchasing policy,, Omega, 14 (1986), 409.
doi: 10.1016/0305-0483(86)90082-4. |
[3] |
M. Bendaya and M. Hariga, Integrated single vendor single buyer model with stochastic demand and variable lead time,, International Journal of Production Economics, 92 (2004), 75.
doi: 10.1016/j.ijpe.2003.09.012. |
[4] |
J. F. Crowther, Rationale for quantity discounts,, Harvard Business Review, 42 (1964), 121. Google Scholar |
[5] |
A. Eynan and D. H. Kropp, Effective and simple EOQ-like solutions for stochastic demand periodic review systems,, European Journal of Operational Research, 180 (2007), 1135.
doi: 10.1016/j.ejor.2006.05.015. |
[6] |
S. K. Goyal, Note-Comment on: A generalized quantity discount pricing model to increase supplier's profit,, Management Science, 33 (1987), 1635.
doi: 10.1287/mnsc.33.12.1635. |
[7] |
S. K. Goyal, A one vendor multi buyer integrated inventory model: A comment,, European Journal of Operational Research, 82 (1995), 209.
doi: 10.1016/0377-2217(93)E0357-4. |
[8] |
H. Gurnani, A study of quantity discount pricing models with different ordering structures: Order coordination, order consolidation and multi-tier ordering hierarchy,, International Journal of Production Economics, 72 (2001), 203.
doi: 10.1016/S0925-5273(00)00159-6. |
[9] |
R. M. Hill, The single vendor, single buyer integrated production inventory model with a generalized policy,, European Journal of Operational Research, 97 (1997), 493.
doi: 10.1016/S0377-2217(96)00267-6. |
[10] |
T. D. Klastorin, K. Moinzadeh and J. Son, Coordinating orders in supply chains through price discounts,, IIE Transactions, 34 (2002), 679.
doi: 10.1080/07408170208928904. |
[11] |
M. Khouja, Optimizing inventory decisions in a multistage multi customer supply chain,, Transportation Research Part E: Logistics and Transportation Review, 39 (2003), 193.
doi: 10.1016/S1366-5545(02)00036-4. |
[12] |
B. W. Kim, J. M. Y. Leung, K. T. Park, G. Zhang and S. C. Lee, Configuring a manufacturing firm's supply network with multiple supplier,, IIE transactions, 34 (2002), 663.
doi: 10.1080/07408170208928903. |
[13] |
L. Lu, Theory and methodology: A one vendor multi buyer integrated inventory model,, European Journal of Operational Research, 81 (1995), 312.
doi: 10.1016/0377-2217(93)E0253-T. |
[14] |
A. K. Misra, Selective discount for supplier buyer coordination using common replenishment epochs,, European Journal of Operational Research, 153 (2004), 751.
doi: 10.1016/S0377-2217(02)00811-1. |
[15] |
J. P. Monahan, A quantity discount pricing model to increase vendor profits,, Management Science, 30 (1984), 720.
doi: 10.1287/mnsc.30.6.720. |
[16] |
C. L. Munson and M. J. Rosenblatt, Coordinating a three level supply chain with quantity discounts,, IIE Transactions, 33 (2001), 371.
doi: 10.1080/07408170108936836. |
[17] |
L. Y. Ouyang, K. S. Wu and C. H. Ho, Integrated vendoruyer cooperative models with stochastic demand in controllable lead time,, International Journal of Production Economics, 92 (2004), 255.
doi: 10.1016/j.ijpe.2003.10.016. |
[18] |
M. J. Rosenblatt and H. L. Lee, Improving profitability with quantity discounts under fixed demand,, IIE Transactions, 17 (1985), 388.
doi: 10.1080/07408178508975319. |
[19] |
S. M. Ross, "Stochastic Processes,", 2nd edition, (1995).
|
[20] |
S. P. Sarma, D. Acharya and S. K. Goyal, Buyer vendor coordination models in supply chain management,, European Journal of Operational Research, 175 (2006), 1.
doi: 10.1016/j.ejor.2005.08.006. |
[21] |
M. Sharafali and H. C. Co, Some models for understanding the cooperation between the supplier and the buyer,, International Journal of Production Research, 38 (2000), 3425.
doi: 10.1080/002075400422734. |
[22] |
E. A. Silver, D.F. Pyke and R. Peterson, "Inventory Management and Production Planning and Scheduling,", 3nd edition, (1998). Google Scholar |
[23] |
S. Viswanathan and R. Piplani, Coordinating supply chain inventories through common replenishment epoch,, European Journal of Operational Research, 129 (2001), 277.
doi: 10.1016/S0377-2217(00)00225-3. |
[1] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[2] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[3] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[6] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[7] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[8] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[9] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[10] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[11] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[12] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[13] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[14] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[15] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[16] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[17] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[18] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[19] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[20] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]