January  2013, 9(1): 117-129. doi: 10.3934/jimo.2013.9.117

Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints

1. 

Jiangxi Key Laboratory of Numerical Simulation Technology, School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, 341000

2. 

School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, 341000, China

3. 

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China

Received  February 2012 Revised  May 2012 Published  December 2012

In this paper, we present a multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, which can be viewed as an extension of multivariate spectral gradient method for solving unconstrained optimization problems. The proposed method does not need the computation of the derivative as well as the solution of some linear equations. Under some suitable conditions, we can establish its global convergence results. Preliminary numerical results show that the proposed method is efficient and promising.
Citation: Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial & Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117
References:
[1]

J. Barzilai and J. M. Borwein, Two point step size gradient methods,, IMA J. Numer. Anal., 8 (1988), 141.  doi: 10.1093/imanum/8.1.141.  Google Scholar

[2]

S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems,, Optim. Meth. Soft., 5 (1995), 319.  doi: 10.1080/10556789508805619.  Google Scholar

[3]

E. Dolan and J. Moré, Benchmarking optimization software with performance profiles,, Math. Program. Ser. A, 91 (2002), 201.  doi: 10.1007/s101070100263.  Google Scholar

[4]

M. E. El-Hawary, "Optimal Power Flow: Solution Techniques, Requirement and Challenges,", IEEE Service Center, (1996).   Google Scholar

[5]

L. Han, G. H. Yu and L. T. Guan, Multivariate spectral gradient method for unconstrained optimization,, Appl. Math. and Comput., 201 (2008), 621.  doi: 10.1016/j.amc.2007.12.054.  Google Scholar

[6]

A. N. Iusem and M. V. Solodov, Newton-type methods with generalized distances for constrained optimization,, Optim., 41 (1997), 257.  doi: 10.1080/02331939708844339.  Google Scholar

[7]

W. La Cruz, J. M. Martinez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations,, Math. Comp., 75 (2006), 1429.  doi: 10.1090/S0025-5718-06-01840-0.  Google Scholar

[8]

W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems,, Optim. Meth. Soft., 18 (2003), 583.  doi: 10.1080/10556780310001610493.  Google Scholar

[9]

D. H. Li and X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations,, Numer. Alge. Ctrl. Optim., 1 (2011), 71.   Google Scholar

[10]

Q. N. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations,, IMA J. Numer. Anal., 31 (2011), 1625.  doi: 10.1093/imanum/drq015.  Google Scholar

[11]

F. M. Ma and C. W. Wang, Modified projection method for solving a system of monotone equations with convex constraints,, Appl. Math. Comput., 34 (2010), 47.   Google Scholar

[12]

K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems,, Appl. Math. Comput., 22 (1987), 333.  doi: 10.1016/0096-3003(87)90076-2.  Google Scholar

[13]

K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems,, ACM Trans. Math. Soft., 16 (1990), 143.  doi: 10.1145/78928.78930.  Google Scholar

[14]

J. M. Ortega and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables,", Academic Press, (1970).   Google Scholar

[15]

M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations,, in, (1998), 355.   Google Scholar

[16]

C. W. Wang, Y. J. Wang and C. L. Xu, A projection method for a system of nonlinear monotone equations with convex constraints,, Math. Meth. Oper. Res., 66 (2007), 33.  doi: 10.1007/s00186-006-0140-y.  Google Scholar

[17]

A. J. Wood and B. F. Wollenberg, "Power Generations, Operations and Control,", Wiley, (1996).   Google Scholar

[18]

N. Yamashita and M. Fukushima, Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems,, Math. Program., 76 (1997), 469.   Google Scholar

[19]

G. H. Yu, A derivative-free method for solving large-scale nonlinear systems of equations,, J. Ind. Manag. Optim., 6 (2010), 149.  doi: 10.3934/jimo.2010.6.149.  Google Scholar

[20]

G. H. Yu, Nonmonotone spectral gradient-type methods for large-scaleunconstrained optimization and nonlinear systems of equations,, Pacific J. Optim., 7 (2011), 387.   Google Scholar

[21]

Z. S. Yu, J. Lin, J. Sun, Y. H. Xiao, L. Y. Liu and Z. H. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints,, Appl. Numer. Math., 59 (2009), 2416.  doi: 10.1016/j.apnum.2009.04.004.  Google Scholar

[22]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators,", Springer-Verlag, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[23]

L. Zhang and W. J. Zhou, Spectral gradient projection method for solving nonlinear monotone equations,, J. Comput. Appl. Math., 196 (2006), 478.  doi: 10.1016/j.cam.2005.10.002.  Google Scholar

[24]

W. J. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations,, J. Comp. Math., 25 (2007), 89.   Google Scholar

[25]

W. J. Zhou and D. H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions,, Math. Comp., 77 (2008), 2231.  doi: 10.1090/S0025-5718-08-02121-2.  Google Scholar

show all references

References:
[1]

J. Barzilai and J. M. Borwein, Two point step size gradient methods,, IMA J. Numer. Anal., 8 (1988), 141.  doi: 10.1093/imanum/8.1.141.  Google Scholar

[2]

S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems,, Optim. Meth. Soft., 5 (1995), 319.  doi: 10.1080/10556789508805619.  Google Scholar

[3]

E. Dolan and J. Moré, Benchmarking optimization software with performance profiles,, Math. Program. Ser. A, 91 (2002), 201.  doi: 10.1007/s101070100263.  Google Scholar

[4]

M. E. El-Hawary, "Optimal Power Flow: Solution Techniques, Requirement and Challenges,", IEEE Service Center, (1996).   Google Scholar

[5]

L. Han, G. H. Yu and L. T. Guan, Multivariate spectral gradient method for unconstrained optimization,, Appl. Math. and Comput., 201 (2008), 621.  doi: 10.1016/j.amc.2007.12.054.  Google Scholar

[6]

A. N. Iusem and M. V. Solodov, Newton-type methods with generalized distances for constrained optimization,, Optim., 41 (1997), 257.  doi: 10.1080/02331939708844339.  Google Scholar

[7]

W. La Cruz, J. M. Martinez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations,, Math. Comp., 75 (2006), 1429.  doi: 10.1090/S0025-5718-06-01840-0.  Google Scholar

[8]

W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems,, Optim. Meth. Soft., 18 (2003), 583.  doi: 10.1080/10556780310001610493.  Google Scholar

[9]

D. H. Li and X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations,, Numer. Alge. Ctrl. Optim., 1 (2011), 71.   Google Scholar

[10]

Q. N. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations,, IMA J. Numer. Anal., 31 (2011), 1625.  doi: 10.1093/imanum/drq015.  Google Scholar

[11]

F. M. Ma and C. W. Wang, Modified projection method for solving a system of monotone equations with convex constraints,, Appl. Math. Comput., 34 (2010), 47.   Google Scholar

[12]

K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems,, Appl. Math. Comput., 22 (1987), 333.  doi: 10.1016/0096-3003(87)90076-2.  Google Scholar

[13]

K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems,, ACM Trans. Math. Soft., 16 (1990), 143.  doi: 10.1145/78928.78930.  Google Scholar

[14]

J. M. Ortega and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables,", Academic Press, (1970).   Google Scholar

[15]

M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations,, in, (1998), 355.   Google Scholar

[16]

C. W. Wang, Y. J. Wang and C. L. Xu, A projection method for a system of nonlinear monotone equations with convex constraints,, Math. Meth. Oper. Res., 66 (2007), 33.  doi: 10.1007/s00186-006-0140-y.  Google Scholar

[17]

A. J. Wood and B. F. Wollenberg, "Power Generations, Operations and Control,", Wiley, (1996).   Google Scholar

[18]

N. Yamashita and M. Fukushima, Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems,, Math. Program., 76 (1997), 469.   Google Scholar

[19]

G. H. Yu, A derivative-free method for solving large-scale nonlinear systems of equations,, J. Ind. Manag. Optim., 6 (2010), 149.  doi: 10.3934/jimo.2010.6.149.  Google Scholar

[20]

G. H. Yu, Nonmonotone spectral gradient-type methods for large-scaleunconstrained optimization and nonlinear systems of equations,, Pacific J. Optim., 7 (2011), 387.   Google Scholar

[21]

Z. S. Yu, J. Lin, J. Sun, Y. H. Xiao, L. Y. Liu and Z. H. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints,, Appl. Numer. Math., 59 (2009), 2416.  doi: 10.1016/j.apnum.2009.04.004.  Google Scholar

[22]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators,", Springer-Verlag, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[23]

L. Zhang and W. J. Zhou, Spectral gradient projection method for solving nonlinear monotone equations,, J. Comput. Appl. Math., 196 (2006), 478.  doi: 10.1016/j.cam.2005.10.002.  Google Scholar

[24]

W. J. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations,, J. Comp. Math., 25 (2007), 89.   Google Scholar

[25]

W. J. Zhou and D. H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions,, Math. Comp., 77 (2008), 2231.  doi: 10.1090/S0025-5718-08-02121-2.  Google Scholar

[1]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[2]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[3]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[4]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[7]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[8]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[9]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[10]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[12]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[13]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[14]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[15]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[18]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[19]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[20]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]