January  2013, 9(1): 117-129. doi: 10.3934/jimo.2013.9.117

Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints

1. 

Jiangxi Key Laboratory of Numerical Simulation Technology, School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, 341000

2. 

School of Mathematics and Computer Sciences, Gannan Normal University, Ganzhou, 341000, China

3. 

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China

Received  February 2012 Revised  May 2012 Published  December 2012

In this paper, we present a multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, which can be viewed as an extension of multivariate spectral gradient method for solving unconstrained optimization problems. The proposed method does not need the computation of the derivative as well as the solution of some linear equations. Under some suitable conditions, we can establish its global convergence results. Preliminary numerical results show that the proposed method is efficient and promising.
Citation: Gaohang Yu, Shanzhou Niu, Jianhua Ma. Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. Journal of Industrial and Management Optimization, 2013, 9 (1) : 117-129. doi: 10.3934/jimo.2013.9.117
References:
[1]

J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148. doi: 10.1093/imanum/8.1.141.

[2]

S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems, Optim. Meth. Soft., 5 (1995), 319-345. doi: 10.1080/10556789508805619.

[3]

E. Dolan and J. Moré, Benchmarking optimization software with performance profiles, Math. Program. Ser. A, 91 (2002), 201-213. doi: 10.1007/s101070100263.

[4]

M. E. El-Hawary, "Optimal Power Flow: Solution Techniques, Requirement and Challenges," IEEE Service Center, Piscataway, 1996.

[5]

L. Han, G. H. Yu and L. T. Guan, Multivariate spectral gradient method for unconstrained optimization, Appl. Math. and Comput., 201 (2008), 621-630. doi: 10.1016/j.amc.2007.12.054.

[6]

A. N. Iusem and M. V. Solodov, Newton-type methods with generalized distances for constrained optimization, Optim., 41 (1997), 257-278. doi: 10.1080/02331939708844339.

[7]

W. La Cruz, J. M. Martinez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comp., 75 (2006), 1429-1448. doi: 10.1090/S0025-5718-06-01840-0.

[8]

W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Meth. Soft., 18 (2003), 583-599. doi: 10.1080/10556780310001610493.

[9]

D. H. Li and X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations, Numer. Alge. Ctrl. Optim., 1 (2011), 71-82.

[10]

Q. N. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625-1635. doi: 10.1093/imanum/drq015.

[11]

F. M. Ma and C. W. Wang, Modified projection method for solving a system of monotone equations with convex constraints, Appl. Math. Comput., 34 (2010), 47-56.

[12]

K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361. doi: 10.1016/0096-3003(87)90076-2.

[13]

K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM Trans. Math. Soft., 16 (1990), 143-151. doi: 10.1145/78928.78930.

[14]

J. M. Ortega and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables," Academic Press, New York, 1970.

[15]

M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in "Reformulation: Nonsmooth, Piecewise smooth, Semismooth and Smooth Methods" (eds. M. Fukushima and L. Qi), Kluwer Academic Publishers, (1998), 355-369.

[16]

C. W. Wang, Y. J. Wang and C. L. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Meth. Oper. Res., 66 (2007), 33-46. doi: 10.1007/s00186-006-0140-y.

[17]

A. J. Wood and B. F. Wollenberg, "Power Generations, Operations and Control," Wiley, New York, 1996.

[18]

N. Yamashita and M. Fukushima, Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems, Math. Program., 76 (1997), 469-491, (2000), 583-599.

[19]

G. H. Yu, A derivative-free method for solving large-scale nonlinear systems of equations, J. Ind. Manag. Optim., 6 (2010), 149-160. doi: 10.3934/jimo.2010.6.149.

[20]

G. H. Yu, Nonmonotone spectral gradient-type methods for large-scaleunconstrained optimization and nonlinear systems of equations, Pacific J. Optim., 7 (2011), 387-404.

[21]

Z. S. Yu, J. Lin, J. Sun, Y. H. Xiao, L. Y. Liu and Z. H. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423. doi: 10.1016/j.apnum.2009.04.004.

[22]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators," Springer-Verlag, 1990. doi: 10.1007/978-1-4612-0985-0.

[23]

L. Zhang and W. J. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196 (2006), 478-484. doi: 10.1016/j.cam.2005.10.002.

[24]

W. J. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations, J. Comp. Math., 25 (2007), 89-96.

[25]

W. J. Zhou and D. H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions, Math. Comp., 77 (2008), 2231-2240. doi: 10.1090/S0025-5718-08-02121-2.

show all references

References:
[1]

J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148. doi: 10.1093/imanum/8.1.141.

[2]

S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity problems, Optim. Meth. Soft., 5 (1995), 319-345. doi: 10.1080/10556789508805619.

[3]

E. Dolan and J. Moré, Benchmarking optimization software with performance profiles, Math. Program. Ser. A, 91 (2002), 201-213. doi: 10.1007/s101070100263.

[4]

M. E. El-Hawary, "Optimal Power Flow: Solution Techniques, Requirement and Challenges," IEEE Service Center, Piscataway, 1996.

[5]

L. Han, G. H. Yu and L. T. Guan, Multivariate spectral gradient method for unconstrained optimization, Appl. Math. and Comput., 201 (2008), 621-630. doi: 10.1016/j.amc.2007.12.054.

[6]

A. N. Iusem and M. V. Solodov, Newton-type methods with generalized distances for constrained optimization, Optim., 41 (1997), 257-278. doi: 10.1080/02331939708844339.

[7]

W. La Cruz, J. M. Martinez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comp., 75 (2006), 1429-1448. doi: 10.1090/S0025-5718-06-01840-0.

[8]

W. La Cruz and M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Meth. Soft., 18 (2003), 583-599. doi: 10.1080/10556780310001610493.

[9]

D. H. Li and X. L. Wang, A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations, Numer. Alge. Ctrl. Optim., 1 (2011), 71-82.

[10]

Q. N. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625-1635. doi: 10.1093/imanum/drq015.

[11]

F. M. Ma and C. W. Wang, Modified projection method for solving a system of monotone equations with convex constraints, Appl. Math. Comput., 34 (2010), 47-56.

[12]

K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361. doi: 10.1016/0096-3003(87)90076-2.

[13]

K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM Trans. Math. Soft., 16 (1990), 143-151. doi: 10.1145/78928.78930.

[14]

J. M. Ortega and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables," Academic Press, New York, 1970.

[15]

M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in "Reformulation: Nonsmooth, Piecewise smooth, Semismooth and Smooth Methods" (eds. M. Fukushima and L. Qi), Kluwer Academic Publishers, (1998), 355-369.

[16]

C. W. Wang, Y. J. Wang and C. L. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Meth. Oper. Res., 66 (2007), 33-46. doi: 10.1007/s00186-006-0140-y.

[17]

A. J. Wood and B. F. Wollenberg, "Power Generations, Operations and Control," Wiley, New York, 1996.

[18]

N. Yamashita and M. Fukushima, Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems, Math. Program., 76 (1997), 469-491, (2000), 583-599.

[19]

G. H. Yu, A derivative-free method for solving large-scale nonlinear systems of equations, J. Ind. Manag. Optim., 6 (2010), 149-160. doi: 10.3934/jimo.2010.6.149.

[20]

G. H. Yu, Nonmonotone spectral gradient-type methods for large-scaleunconstrained optimization and nonlinear systems of equations, Pacific J. Optim., 7 (2011), 387-404.

[21]

Z. S. Yu, J. Lin, J. Sun, Y. H. Xiao, L. Y. Liu and Z. H. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423. doi: 10.1016/j.apnum.2009.04.004.

[22]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications, II/B: Nonlinear Monotone Operators," Springer-Verlag, 1990. doi: 10.1007/978-1-4612-0985-0.

[23]

L. Zhang and W. J. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196 (2006), 478-484. doi: 10.1016/j.cam.2005.10.002.

[24]

W. J. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations, J. Comp. Math., 25 (2007), 89-96.

[25]

W. J. Zhou and D. H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions, Math. Comp., 77 (2008), 2231-2240. doi: 10.1090/S0025-5718-08-02121-2.

[1]

Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial and Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017

[2]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial and Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[3]

Abdulkarim Hassan Ibrahim, Poom Kumam, Min Sun, Parin Chaipunya, Auwal Bala Abubakar. Projection method with inertial step for nonlinear equations: Application to signal recovery. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021173

[4]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[5]

Gusein Sh. Guseinov. Spectral method for deriving multivariate Poisson summation formulae. Communications on Pure and Applied Analysis, 2013, 12 (1) : 359-373. doi: 10.3934/cpaa.2013.12.359

[6]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[7]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[8]

Abdulkarim Hassan Ibrahim, Jitsupa Deepho, Auwal Bala Abubakar, Kazeem Olalekan Aremu. A modified Liu-Storey-Conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021022

[9]

Yigui Ou, Wenjie Xu. A unified derivative-free projection method model for large-scale nonlinear equations with convex constraints. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021125

[10]

Can Huang, Zhimin Zhang. The spectral collocation method for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 667-679. doi: 10.3934/dcdsb.2013.18.667

[11]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[12]

Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056

[13]

Wanyou Cheng, Zixin Chen, Donghui Li. Nomonotone spectral gradient method for sparse recovery. Inverse Problems and Imaging, 2015, 9 (3) : 815-833. doi: 10.3934/ipi.2015.9.815

[14]

Jahnabi Chakravarty, Ashiho Athikho, Manideepa Saha. Convergence of interval AOR method for linear interval equations. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 293-308. doi: 10.3934/naco.2021006

[15]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[16]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic and Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

[17]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial and Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[18]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[19]

Nora Merabet. Global convergence of a memory gradient method with closed-form step size formula. Conference Publications, 2007, 2007 (Special) : 721-730. doi: 10.3934/proc.2007.2007.721

[20]

Shujuan Lü, Zeting Liu, Zhaosheng Feng. Hermite spectral method for Long-Short wave equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 941-964. doi: 10.3934/dcdsb.2018255

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (105)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]