• Previous Article
    Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function
  • JIMO Home
  • This Issue
  • Next Article
    Optimality conditions and duality in nondifferentiable interval-valued programming
January  2013, 9(1): 143-151. doi: 10.3934/jimo.2013.9.143

Scalarization of approximate solution for vector equilibrium problems

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China

2. 

Department of Mathematics, Chongqing Normal University, Chongqing, 400047

Received  November 2011 Revised  June 2012 Published  December 2012

In this paper, some scalar characterizations of approximate weakly efficient solutions and approximate Henig efficient solutions for vector equilibrium problems are derived without imposing any convexity assumption on objective functions and feasible set. Meanwhile, the linear scalar characterization of approximate weakly efficient solutions is also established under the conditions of generalized convexity. As an application of the results in this paper, scalar characterizations of weakly efficient solution, Henig efficient solution and super efficient solution for vector equilibrium problems are obtained.
Citation: Qiusheng Qiu, Xinmin Yang. Scalarization of approximate solution for vector equilibrium problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 143-151. doi: 10.3934/jimo.2013.9.143
References:
[1]

Q. H. Ansari, W. Oettli and D. Schager, A generalization of vectorial equilibria,, Mathematical Methods of Operations Research, 46 (1997), 147.   Google Scholar

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations of solutions for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.  doi: 10.1023/A:1015366419163.  Google Scholar

[3]

M. Bianchi, N. Hadjisawas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions,, J. Optim. Theory Appl., 92 (1997), 527.  doi: 10.1023/A:1022603406244.  Google Scholar

[4]

J. P. Dauer and R. J. Gallagher, Positive proper efficient points and related cone results in vector optimization theory,, SIAM J. Control Optim., 28 (1990), 158.  doi: 10.1137/0328008.  Google Scholar

[5]

J. Fu, Simultaneous vector variational inequalities and vector implicit complementarity problems,, J. Optim. Theory Appl., 93 (1997), 141.  doi: 10.1023/A:1022653918733.  Google Scholar

[6]

C. Gerth and P. Weidner, Nonconvex separation theorem and some applications in vector optimization., J. Optim. Theory Appl., 67 (1990), 297.   Google Scholar

[7]

X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139.   Google Scholar

[8]

X. H. Gong, Connectedness of the set of efficient solution for generalized systems,, J. Optim. Theory Appl., 138 (2008), 189.   Google Scholar

[9]

X. H. Gong, Optimality conditions for vector equilibrium problems,, J. Math. Anal. Appl., 342 (2008), 1455.   Google Scholar

[10]

X. H. Gong, W. T. Fu and W. Liu, Super efficiency for a vector equilibrium in locally convex topological vector spaces,, in, (2000), 233.   Google Scholar

[11]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[12]

N. Hadjisawas and S. Schaile, From scalar to vector equilibrium problems in the quasimonotone case,, J. Optim. Theory Appl., 96 (1998), 297.  doi: 10.1023/A:1022666014055.  Google Scholar

[13]

J. Jahn, "Mathematical Vector Optimization in Partially Order Linear Spaces,", Verlag Peter Lang, (1986).   Google Scholar

[14]

K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Mathematics, 12 (2008), 649.   Google Scholar

[15]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Global Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[16]

Q. S. Qiu, Optimality conditions for vector equilibrium problems with constraints,, J. Industrial Management Optim., 5 (2009), 783.   Google Scholar

[17]

J. H. Qiu, Scalarization of Henig properly efficient points in locally convex spaces,, J. Optim. Theory Appl., 147 (2010), 71.   Google Scholar

show all references

References:
[1]

Q. H. Ansari, W. Oettli and D. Schager, A generalization of vectorial equilibria,, Mathematical Methods of Operations Research, 46 (1997), 147.   Google Scholar

[2]

Q. H. Ansari, I. V. Konnov and J. C. Yao, Characterizations of solutions for vector equilibrium problems,, J. Optim. Theory Appl., 113 (2002), 435.  doi: 10.1023/A:1015366419163.  Google Scholar

[3]

M. Bianchi, N. Hadjisawas and S. Schaible, Vector equilibrium problems with generalized monotone bifunctions,, J. Optim. Theory Appl., 92 (1997), 527.  doi: 10.1023/A:1022603406244.  Google Scholar

[4]

J. P. Dauer and R. J. Gallagher, Positive proper efficient points and related cone results in vector optimization theory,, SIAM J. Control Optim., 28 (1990), 158.  doi: 10.1137/0328008.  Google Scholar

[5]

J. Fu, Simultaneous vector variational inequalities and vector implicit complementarity problems,, J. Optim. Theory Appl., 93 (1997), 141.  doi: 10.1023/A:1022653918733.  Google Scholar

[6]

C. Gerth and P. Weidner, Nonconvex separation theorem and some applications in vector optimization., J. Optim. Theory Appl., 67 (1990), 297.   Google Scholar

[7]

X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems,, J. Optim. Theory Appl., 108 (2001), 139.   Google Scholar

[8]

X. H. Gong, Connectedness of the set of efficient solution for generalized systems,, J. Optim. Theory Appl., 138 (2008), 189.   Google Scholar

[9]

X. H. Gong, Optimality conditions for vector equilibrium problems,, J. Math. Anal. Appl., 342 (2008), 1455.   Google Scholar

[10]

X. H. Gong, W. T. Fu and W. Liu, Super efficiency for a vector equilibrium in locally convex topological vector spaces,, in, (2000), 233.   Google Scholar

[11]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems,, J. Optim. Theory Appl., 138 (2008), 197.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[12]

N. Hadjisawas and S. Schaile, From scalar to vector equilibrium problems in the quasimonotone case,, J. Optim. Theory Appl., 96 (1998), 297.  doi: 10.1023/A:1022666014055.  Google Scholar

[13]

J. Jahn, "Mathematical Vector Optimization in Partially Order Linear Spaces,", Verlag Peter Lang, (1986).   Google Scholar

[14]

K. Kimura and J. C. Yao, Sensitivity analysis of vector equilibrium problems,, Taiwanese J. Mathematics, 12 (2008), 649.   Google Scholar

[15]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector quasi-equilibrium problems,, J. Global Optim., 41 (2008), 187.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[16]

Q. S. Qiu, Optimality conditions for vector equilibrium problems with constraints,, J. Industrial Management Optim., 5 (2009), 783.   Google Scholar

[17]

J. H. Qiu, Scalarization of Henig properly efficient points in locally convex spaces,, J. Optim. Theory Appl., 147 (2010), 71.   Google Scholar

[1]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[2]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[3]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97-115. doi: 10.3934/ipi.2019065

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[9]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[10]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[11]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[12]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Recent progresses in the theory of nonlinear nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[14]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[15]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[16]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[17]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[18]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[19]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[20]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]