• Previous Article
    Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk
  • JIMO Home
  • This Issue
  • Next Article
    Proximal point algorithm for nonlinear complementarity problem based on the generalized Fischer-Burmeister merit function
January  2013, 9(1): 171-189. doi: 10.3934/jimo.2013.9.171

A perturbation approach for an inverse linear second-order cone programming

1. 

Department of Mathematics, School of Science, East China University of Science and Technology, Shanghai, 200237, China

2. 

School of Science, Shenyang Aerospace University, Shenyang, 110136, China

3. 

Institute of ORCT, School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

4. 

Division of Science and Technology, Beijing Normal University-Hong Kong, Baptist University United International College, Zhuhai, 519085, China

Received  April 2011 Revised  June 2012 Published  December 2012

A type of inverse linear second-order cone programming problems is discussed, in which the parameters in both the objective function and the constraint set of a given linear second-order cone programming need to be adjusted as little as possible so that a known feasible solution becomes optimal. This inverse problem can be formulated as a minimization problem with second-order cone complementarity constraints. With the help of the smoothed Fischer-Burmeister function over second-order cones, we construct a smoothing approximation of the formulated problem whose feasible set and optimal solution set are demonstrated to be continuous and outer semicontinuous respectively at the perturbed parameter $\varepsilon=0$. A damped Newton method is employed to solve the perturbed problem and its global convergence and local quadratic convergence rate are shown. Finally, the numerical results are reported to show the effectiveness of the damped Newton method for solving the inverse linear second-order cone programming.
Citation: Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171
References:
[1]

R. Ahuja and J. Orlin, Inverse optimization,, Operations Research, 49 (2001), 771.  doi: 10.1287/opre.49.5.771.10607.  Google Scholar

[2]

R. Ahuja and J. Orlin, Combinatorial algorithms for inverse network flow problems,, Networks, 40 (2002), 181.  doi: 10.1002/net.10048.  Google Scholar

[3]

F. Alizadeh and D. Goldfarb, Second order cone programming,, Mathematical Programming, 95 (2003), 3.  doi: 10.1007/s10107-002-0339-5.  Google Scholar

[4]

W. Burton and P. Toint, On an instance of the inverse shortest paths problem,, Mathematical Programming, 53 (1992), 45.  doi: 10.1007/BF01585693.  Google Scholar

[5]

M. Cai, X. Yang and J. Zhang, The complexity analysis of the inverse center location problem,, Journal of Global Optimization, 15 (1999), 213.  doi: 10.1023/A:1008360312607.  Google Scholar

[6]

J. Chen, D. Sun and J. Sun, The $SC^1$ property of the squared norm of the SOC Fischer-Burmeister function,, Operations Research Letters, 36 (2008), 385.  doi: 10.1016/j.orl.2007.08.005.  Google Scholar

[7]

X. Chen and M. Fukushima, A smoothing method for a mathematical program with P-matrix linear complementarity constraints,, Computational Optimization and Applications, 27 (2004), 223.  doi: 10.1023/B:COAP.0000013057.54647.6d.  Google Scholar

[8]

Ejiri Takeshi, "A Smoothing Method for Mathematical Programs with Second-Order Cone Complementarity Constraints,", Master thesis, (2007).   Google Scholar

[9]

F. Facchinei, H. Jiang and L. Qi, A smoothing method for mathematical programs with equilibrium constraints,, Mathematical Programming, 85 (1999), 107.  doi: 10.1007/s101070050048.  Google Scholar

[10]

M. Fukushima, Z. Luo and J. Pang, A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints,, Computational Optimization and Applications, 10 (1998), 5.  doi: 10.1023/A:1018359900133.  Google Scholar

[11]

M. Fukushima, Z. Luo and P. Tseng, Smoothing functions for second-order cone complimentarity problems,, SIAM Journal on Optimization, 12 (2001), 436.  doi: 10.1137/S1052623400380365.  Google Scholar

[12]

M. Fukushima and J. Pang, Convergence of a smoothing continuation method for mathematical problems with complementarity constraints,, Lecture Notes in Economics and Mathematical Systems, 477 (1999), 105.  doi: 10.1007/978-3-642-45780-7_7.  Google Scholar

[13]

M. Grant and S. Boyd, "CVX Users' Guide,", Available from: , ().   Google Scholar

[14]

C. Heuberger, Inverse combinatorial optimization: a survey on problems, methods and results,, Journal of Combinatorial Optimization, 8 (2004), 329.  doi: 10.1023/B:JOCO.0000038914.26975.9b.  Google Scholar

[15]

G. Iyengar and W. Kang, Inverse conic programming and applications,, Operations Research Letters, 33 (2005), 319.  doi: 10.1016/j.orl.2004.04.007.  Google Scholar

[16]

H. Jiang and D. Ralph, Smooth SQP methods for mathematical programs with nonlinear complementarity constraints,, SIAM Journal on Optimization, 10 (2000), 779.  doi: 10.1137/S1052623497332329.  Google Scholar

[17]

G. Lin and M. Fukushima, Some exact penalty results for nonlinear programs and their applications to mathematical programs with equilibrium constraints,, Journal of Optimization Theory and Applications, 118 (2003), 67.  doi: 10.1023/A:1024787424532.  Google Scholar

[18]

G. Lin and M. Fukushima, A modified relaxation scheme for mathematical prgrams with complementarity constraints,, Annals of Operations Research, 133 (2005), 63.  doi: 10.1007/s10479-004-5024-z.  Google Scholar

[19]

Z. Luo, J. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints,", Cambridge University Press, (1996).  doi: 10.1017/CBO9780511983658.  Google Scholar

[20]

L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,, Mathematics of Operations Research, 18 (1993), 227.  doi: 10.1287/moor.18.1.227.  Google Scholar

[21]

R. Rockafellar and R. Wets, "Variational Analysis,", Springer-Verlag, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[22]

S. Scholtes and M. Stöhr, Exact penalization of mathematical programs with equilibrium constraints,, SIAM Journal on Control and Optimization, 37 (1999), 617.  doi: 10.1137/S0363012996306121.  Google Scholar

[23]

S. Scholtes, Convergence properties of a regularization scheme for mathematical programs with complementarity constraints,, SIAM Journal on Optimization, 25 (2001), 1.  doi: 10.1137/S1052623499361233.  Google Scholar

[24]

X. Xiao, L. Zhang and J. Zhang, A smoothing Newton method for a type of inverse semi-definite quadratic programming problem,, Journal of Computational and Applied Mathematics, 223 (2009), 485.  doi: 10.1016/j.cam.2008.01.028.  Google Scholar

[25]

J. Zhang and Z. Liu, Calculating some inverse linear programming problems,, Journal of Computational and Applied Mathematics, 72 (1996), 261.  doi: 10.1016/0377-0427(95)00277-4.  Google Scholar

[26]

J. Zhang and Z. Liu, A further study on inverse linear programming problems,, Journal of Computational and Applied Mathematics, 106 (1999), 345.  doi: 10.1016/S0377-0427(99)00080-1.  Google Scholar

[27]

J. Zhang, Z. Liu and Z. Ma, Some reverse location problems,, European Journal of Operations Research, 124 (2000), 77.  doi: 10.1016/S0377-2217(99)00122-8.  Google Scholar

[28]

J. Zhang and Z. Ma, Solution structure of some inverse combinatorial optimization problems,, Journal of Combinatorial Optimization, 3 (1999), 127.  doi: 10.1023/A:1009829525096.  Google Scholar

[29]

J. Zhang and L. Zhang, An augmented Lagrangian method for a class of inverse quadratic programming problems,, Applied Mathematics and Optimization, 61 (2010), 57.  doi: 10.1007/s00245-009-9075-z.  Google Scholar

[30]

J. Zhang, L. Zhang and X. Xiao, A Perturbation approach for an inverse quadratic programming problem,, Mathematical Methods of Operations Research, 72 (2010), 379.  doi: 10.1007/s00186-010-0323-4.  Google Scholar

[31]

Y. Zhang, L. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints,, Set-Valued and Variational Analysis, 19 (2011), 609.  doi: 10.1007/s11228-011-0190-z.  Google Scholar

show all references

References:
[1]

R. Ahuja and J. Orlin, Inverse optimization,, Operations Research, 49 (2001), 771.  doi: 10.1287/opre.49.5.771.10607.  Google Scholar

[2]

R. Ahuja and J. Orlin, Combinatorial algorithms for inverse network flow problems,, Networks, 40 (2002), 181.  doi: 10.1002/net.10048.  Google Scholar

[3]

F. Alizadeh and D. Goldfarb, Second order cone programming,, Mathematical Programming, 95 (2003), 3.  doi: 10.1007/s10107-002-0339-5.  Google Scholar

[4]

W. Burton and P. Toint, On an instance of the inverse shortest paths problem,, Mathematical Programming, 53 (1992), 45.  doi: 10.1007/BF01585693.  Google Scholar

[5]

M. Cai, X. Yang and J. Zhang, The complexity analysis of the inverse center location problem,, Journal of Global Optimization, 15 (1999), 213.  doi: 10.1023/A:1008360312607.  Google Scholar

[6]

J. Chen, D. Sun and J. Sun, The $SC^1$ property of the squared norm of the SOC Fischer-Burmeister function,, Operations Research Letters, 36 (2008), 385.  doi: 10.1016/j.orl.2007.08.005.  Google Scholar

[7]

X. Chen and M. Fukushima, A smoothing method for a mathematical program with P-matrix linear complementarity constraints,, Computational Optimization and Applications, 27 (2004), 223.  doi: 10.1023/B:COAP.0000013057.54647.6d.  Google Scholar

[8]

Ejiri Takeshi, "A Smoothing Method for Mathematical Programs with Second-Order Cone Complementarity Constraints,", Master thesis, (2007).   Google Scholar

[9]

F. Facchinei, H. Jiang and L. Qi, A smoothing method for mathematical programs with equilibrium constraints,, Mathematical Programming, 85 (1999), 107.  doi: 10.1007/s101070050048.  Google Scholar

[10]

M. Fukushima, Z. Luo and J. Pang, A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints,, Computational Optimization and Applications, 10 (1998), 5.  doi: 10.1023/A:1018359900133.  Google Scholar

[11]

M. Fukushima, Z. Luo and P. Tseng, Smoothing functions for second-order cone complimentarity problems,, SIAM Journal on Optimization, 12 (2001), 436.  doi: 10.1137/S1052623400380365.  Google Scholar

[12]

M. Fukushima and J. Pang, Convergence of a smoothing continuation method for mathematical problems with complementarity constraints,, Lecture Notes in Economics and Mathematical Systems, 477 (1999), 105.  doi: 10.1007/978-3-642-45780-7_7.  Google Scholar

[13]

M. Grant and S. Boyd, "CVX Users' Guide,", Available from: , ().   Google Scholar

[14]

C. Heuberger, Inverse combinatorial optimization: a survey on problems, methods and results,, Journal of Combinatorial Optimization, 8 (2004), 329.  doi: 10.1023/B:JOCO.0000038914.26975.9b.  Google Scholar

[15]

G. Iyengar and W. Kang, Inverse conic programming and applications,, Operations Research Letters, 33 (2005), 319.  doi: 10.1016/j.orl.2004.04.007.  Google Scholar

[16]

H. Jiang and D. Ralph, Smooth SQP methods for mathematical programs with nonlinear complementarity constraints,, SIAM Journal on Optimization, 10 (2000), 779.  doi: 10.1137/S1052623497332329.  Google Scholar

[17]

G. Lin and M. Fukushima, Some exact penalty results for nonlinear programs and their applications to mathematical programs with equilibrium constraints,, Journal of Optimization Theory and Applications, 118 (2003), 67.  doi: 10.1023/A:1024787424532.  Google Scholar

[18]

G. Lin and M. Fukushima, A modified relaxation scheme for mathematical prgrams with complementarity constraints,, Annals of Operations Research, 133 (2005), 63.  doi: 10.1007/s10479-004-5024-z.  Google Scholar

[19]

Z. Luo, J. Pang and D. Ralph, "Mathematical Programs with Equilibrium Constraints,", Cambridge University Press, (1996).  doi: 10.1017/CBO9780511983658.  Google Scholar

[20]

L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,, Mathematics of Operations Research, 18 (1993), 227.  doi: 10.1287/moor.18.1.227.  Google Scholar

[21]

R. Rockafellar and R. Wets, "Variational Analysis,", Springer-Verlag, (1998).  doi: 10.1007/978-3-642-02431-3.  Google Scholar

[22]

S. Scholtes and M. Stöhr, Exact penalization of mathematical programs with equilibrium constraints,, SIAM Journal on Control and Optimization, 37 (1999), 617.  doi: 10.1137/S0363012996306121.  Google Scholar

[23]

S. Scholtes, Convergence properties of a regularization scheme for mathematical programs with complementarity constraints,, SIAM Journal on Optimization, 25 (2001), 1.  doi: 10.1137/S1052623499361233.  Google Scholar

[24]

X. Xiao, L. Zhang and J. Zhang, A smoothing Newton method for a type of inverse semi-definite quadratic programming problem,, Journal of Computational and Applied Mathematics, 223 (2009), 485.  doi: 10.1016/j.cam.2008.01.028.  Google Scholar

[25]

J. Zhang and Z. Liu, Calculating some inverse linear programming problems,, Journal of Computational and Applied Mathematics, 72 (1996), 261.  doi: 10.1016/0377-0427(95)00277-4.  Google Scholar

[26]

J. Zhang and Z. Liu, A further study on inverse linear programming problems,, Journal of Computational and Applied Mathematics, 106 (1999), 345.  doi: 10.1016/S0377-0427(99)00080-1.  Google Scholar

[27]

J. Zhang, Z. Liu and Z. Ma, Some reverse location problems,, European Journal of Operations Research, 124 (2000), 77.  doi: 10.1016/S0377-2217(99)00122-8.  Google Scholar

[28]

J. Zhang and Z. Ma, Solution structure of some inverse combinatorial optimization problems,, Journal of Combinatorial Optimization, 3 (1999), 127.  doi: 10.1023/A:1009829525096.  Google Scholar

[29]

J. Zhang and L. Zhang, An augmented Lagrangian method for a class of inverse quadratic programming problems,, Applied Mathematics and Optimization, 61 (2010), 57.  doi: 10.1007/s00245-009-9075-z.  Google Scholar

[30]

J. Zhang, L. Zhang and X. Xiao, A Perturbation approach for an inverse quadratic programming problem,, Mathematical Methods of Operations Research, 72 (2010), 379.  doi: 10.1007/s00186-010-0323-4.  Google Scholar

[31]

Y. Zhang, L. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints,, Set-Valued and Variational Analysis, 19 (2011), 609.  doi: 10.1007/s11228-011-0190-z.  Google Scholar

[1]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[2]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[6]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[7]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[8]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[9]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[10]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[11]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[12]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[13]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[14]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[16]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[17]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[18]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[19]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[20]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]