• Previous Article
    Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system
  • JIMO Home
  • This Issue
  • Next Article
    A perturbation approach for an inverse linear second-order cone programming
January  2013, 9(1): 191-204. doi: 10.3934/jimo.2013.9.191

Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk

1. 

Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes, SA 5095, Australia

2. 

CSIRO Mathematics, Informatics and Statistics, North Ryde, NSW, Australia

Received  November 2011 Revised  June 2012 Published  December 2012

A problem of minimization of $L_1$-penalized conditional value-at-risk (CVaR) is considered. It is shown that there exists a non-negative threshold value of the penalty parameter such that the optimal value of the penalized problem is unbounded if the penalty parameter is less than the threshold value, and it is bounded if the penalty parameter is greater or equal than this value. It is established that the threshold value can be found via the solution of a linear programming problem, and, therefore, readily computable. Theoretical results are illustrated by numerical examples.
Citation: Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191
References:
[1]

S. Alexander, T. F. Coleman and Y. Li, Derivative portfolio hedging based on CVaR,, in, (2004), 339.   Google Scholar

[2]

S. Alexander, T. F. Coleman and Y. Li, Minimizing CVaR and VaR for a portfolio of derivatives,, Journal of Banking and Finance, 30 (2006), 583.  doi: 10.1016/j.jbankfin.2005.04.012.  Google Scholar

[3]

K. A. Boyle, T. F. Coleman and Y. Li, Hedging a portfolio of derivatives by modeling cost,, in, (2003).   Google Scholar

[4]

Z. G. Cao, R. D. F. Harris and J. Shen, Hedging and value at risk: A semi-parametric approach,, Journal of Futures Markets, 30 (2010), 780.   Google Scholar

[5]

G. B. Dantzig, "Linear Programming and Extensions,", Princeton: Princeton University Press, (1963).   Google Scholar

[6]

C. I. Fabian, Handling CVaR objectives and constraints in two-stage stochastic models,, European Journal of Operational Research, 191 (2008), 888.  doi: 10.1016/j.ejor.2007.02.052.  Google Scholar

[7]

R. D. F. Harris and J. Shen, Hedging and value at risk,, Journal of Futures Markets, 26 (2006), 369.  doi: 10.1002/fut.20195.  Google Scholar

[8]

D. Huang, S. Zhu, F. J Fabozzi and M. Fukushima, Portfolio selelction under distributional uncertainty: a relative robust CVaR approach,, European Journal of Operational Research, 203 (2010), 185.  doi: 10.1016/j.ejor.2009.07.010.  Google Scholar

[9]

H. Mausser and D. Rosen, Beyond VaR: From measuring risk to managing risk,, ALGO Research Quarterly, 1 (1998), 5.   Google Scholar

[10]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value at risk,, Journal of Risk, 2 (2000), 21.   Google Scholar

[11]

R. T. Rockafellar and S. Uryasev, Conditional value at risk for general loss distributions,, Journal of Banking and Finance, 26 (2002), 1443.  doi: 10.1016/S0378-4266(02)00271-6.  Google Scholar

[12]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model,, Journal of Industrial and Management Optimization, 8 (2012), 343.  doi: 10.3934/jimo.2012.8.343.  Google Scholar

[13]

T. Tarnopolskaya, J. Tabak and F. R. de Hoog, L-curve for hedging instrument selection in CVaR-minimising portfolio hedging,, in, (2009), 1559.   Google Scholar

[14]

N. Topaloglou, H. Vladimirou and S. A. Zenios, CVaR models with selective hedging for international asset allocation,, Journal of Banking and Finance, 26 (2002), 1535.  doi: 10.1016/S0378-4266(02)00289-3.  Google Scholar

[15]

S. P. Uryasev and R. T. Rockafellar, Conditional value-at-risk: Optimization approach,, Stochastic Optimization: Algorithms and Applications, 54 (2001), 411.   Google Scholar

show all references

References:
[1]

S. Alexander, T. F. Coleman and Y. Li, Derivative portfolio hedging based on CVaR,, in, (2004), 339.   Google Scholar

[2]

S. Alexander, T. F. Coleman and Y. Li, Minimizing CVaR and VaR for a portfolio of derivatives,, Journal of Banking and Finance, 30 (2006), 583.  doi: 10.1016/j.jbankfin.2005.04.012.  Google Scholar

[3]

K. A. Boyle, T. F. Coleman and Y. Li, Hedging a portfolio of derivatives by modeling cost,, in, (2003).   Google Scholar

[4]

Z. G. Cao, R. D. F. Harris and J. Shen, Hedging and value at risk: A semi-parametric approach,, Journal of Futures Markets, 30 (2010), 780.   Google Scholar

[5]

G. B. Dantzig, "Linear Programming and Extensions,", Princeton: Princeton University Press, (1963).   Google Scholar

[6]

C. I. Fabian, Handling CVaR objectives and constraints in two-stage stochastic models,, European Journal of Operational Research, 191 (2008), 888.  doi: 10.1016/j.ejor.2007.02.052.  Google Scholar

[7]

R. D. F. Harris and J. Shen, Hedging and value at risk,, Journal of Futures Markets, 26 (2006), 369.  doi: 10.1002/fut.20195.  Google Scholar

[8]

D. Huang, S. Zhu, F. J Fabozzi and M. Fukushima, Portfolio selelction under distributional uncertainty: a relative robust CVaR approach,, European Journal of Operational Research, 203 (2010), 185.  doi: 10.1016/j.ejor.2009.07.010.  Google Scholar

[9]

H. Mausser and D. Rosen, Beyond VaR: From measuring risk to managing risk,, ALGO Research Quarterly, 1 (1998), 5.   Google Scholar

[10]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value at risk,, Journal of Risk, 2 (2000), 21.   Google Scholar

[11]

R. T. Rockafellar and S. Uryasev, Conditional value at risk for general loss distributions,, Journal of Banking and Finance, 26 (2002), 1443.  doi: 10.1016/S0378-4266(02)00271-6.  Google Scholar

[12]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model,, Journal of Industrial and Management Optimization, 8 (2012), 343.  doi: 10.3934/jimo.2012.8.343.  Google Scholar

[13]

T. Tarnopolskaya, J. Tabak and F. R. de Hoog, L-curve for hedging instrument selection in CVaR-minimising portfolio hedging,, in, (2009), 1559.   Google Scholar

[14]

N. Topaloglou, H. Vladimirou and S. A. Zenios, CVaR models with selective hedging for international asset allocation,, Journal of Banking and Finance, 26 (2002), 1535.  doi: 10.1016/S0378-4266(02)00289-3.  Google Scholar

[15]

S. P. Uryasev and R. T. Rockafellar, Conditional value-at-risk: Optimization approach,, Stochastic Optimization: Algorithms and Applications, 54 (2001), 411.   Google Scholar

[1]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[4]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[5]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[6]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[7]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[8]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[12]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[13]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[15]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[16]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[17]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[18]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[19]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[20]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]