• Previous Article
    Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system
  • JIMO Home
  • This Issue
  • Next Article
    A perturbation approach for an inverse linear second-order cone programming
January  2013, 9(1): 191-204. doi: 10.3934/jimo.2013.9.191

Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk

1. 

Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes, SA 5095, Australia

2. 

CSIRO Mathematics, Informatics and Statistics, North Ryde, NSW, Australia

Received  November 2011 Revised  June 2012 Published  December 2012

A problem of minimization of $L_1$-penalized conditional value-at-risk (CVaR) is considered. It is shown that there exists a non-negative threshold value of the penalty parameter such that the optimal value of the penalized problem is unbounded if the penalty parameter is less than the threshold value, and it is bounded if the penalty parameter is greater or equal than this value. It is established that the threshold value can be found via the solution of a linear programming problem, and, therefore, readily computable. Theoretical results are illustrated by numerical examples.
Citation: Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191
References:
[1]

S. Alexander, T. F. Coleman and Y. Li, Derivative portfolio hedging based on CVaR, in "Risk Measures for the 21st Century" (eds. G. Szego), London: Wiley, (2004), 339-363.

[2]

S. Alexander, T. F. Coleman and Y. Li, Minimizing CVaR and VaR for a portfolio of derivatives, Journal of Banking and Finance, 30 (2006), 583-605. doi: 10.1016/j.jbankfin.2005.04.012.

[3]

K. A. Boyle, T. F. Coleman and Y. Li, Hedging a portfolio of derivatives by modeling cost, in "IEEE Proceedings of the 2003 International Conference on Computational Intelligence for Financial Engineering (CIFE 2003)".

[4]

Z. G. Cao, R. D. F. Harris and J. Shen, Hedging and value at risk: A semi-parametric approach, Journal of Futures Markets, 30 (2010), 780-794.

[5]

G. B. Dantzig, "Linear Programming and Extensions," Princeton: Princeton University Press, 1963.

[6]

C. I. Fabian, Handling CVaR objectives and constraints in two-stage stochastic models, European Journal of Operational Research, 191 (2008), 888-911. doi: 10.1016/j.ejor.2007.02.052.

[7]

R. D. F. Harris and J. Shen, Hedging and value at risk, Journal of Futures Markets, 26 (2006), 369-390. doi: 10.1002/fut.20195.

[8]

D. Huang, S. Zhu, F. J Fabozzi and M. Fukushima, Portfolio selelction under distributional uncertainty: a relative robust CVaR approach, European Journal of Operational Research, 203 (2010), 185-194. doi: 10.1016/j.ejor.2009.07.010.

[9]

H. Mausser and D. Rosen, Beyond VaR: From measuring risk to managing risk, ALGO Research Quarterly, 1 (1998), 5-20.

[10]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value at risk, Journal of Risk, 2 (2000), 21-41.

[11]

R. T. Rockafellar and S. Uryasev, Conditional value at risk for general loss distributions, Journal of Banking and Finance, 26 (2002), 1443-1471. doi: 10.1016/S0378-4266(02)00271-6.

[12]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model, Journal of Industrial and Management Optimization, 8 (2012), 343-362. doi: 10.3934/jimo.2012.8.343.

[13]

T. Tarnopolskaya, J. Tabak and F. R. de Hoog, L-curve for hedging instrument selection in CVaR-minimising portfolio hedging, in "18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation" (eds. R. S. Anderssen et al), (2009), 1559-1565.

[14]

N. Topaloglou, H. Vladimirou and S. A. Zenios, CVaR models with selective hedging for international asset allocation, Journal of Banking and Finance, 26 (2002), 1535-1561. doi: 10.1016/S0378-4266(02)00289-3.

[15]

S. P. Uryasev and R. T. Rockafellar, Conditional value-at-risk: Optimization approach, Stochastic Optimization: Algorithms and Applications, 54 (2001), 411-435.

show all references

References:
[1]

S. Alexander, T. F. Coleman and Y. Li, Derivative portfolio hedging based on CVaR, in "Risk Measures for the 21st Century" (eds. G. Szego), London: Wiley, (2004), 339-363.

[2]

S. Alexander, T. F. Coleman and Y. Li, Minimizing CVaR and VaR for a portfolio of derivatives, Journal of Banking and Finance, 30 (2006), 583-605. doi: 10.1016/j.jbankfin.2005.04.012.

[3]

K. A. Boyle, T. F. Coleman and Y. Li, Hedging a portfolio of derivatives by modeling cost, in "IEEE Proceedings of the 2003 International Conference on Computational Intelligence for Financial Engineering (CIFE 2003)".

[4]

Z. G. Cao, R. D. F. Harris and J. Shen, Hedging and value at risk: A semi-parametric approach, Journal of Futures Markets, 30 (2010), 780-794.

[5]

G. B. Dantzig, "Linear Programming and Extensions," Princeton: Princeton University Press, 1963.

[6]

C. I. Fabian, Handling CVaR objectives and constraints in two-stage stochastic models, European Journal of Operational Research, 191 (2008), 888-911. doi: 10.1016/j.ejor.2007.02.052.

[7]

R. D. F. Harris and J. Shen, Hedging and value at risk, Journal of Futures Markets, 26 (2006), 369-390. doi: 10.1002/fut.20195.

[8]

D. Huang, S. Zhu, F. J Fabozzi and M. Fukushima, Portfolio selelction under distributional uncertainty: a relative robust CVaR approach, European Journal of Operational Research, 203 (2010), 185-194. doi: 10.1016/j.ejor.2009.07.010.

[9]

H. Mausser and D. Rosen, Beyond VaR: From measuring risk to managing risk, ALGO Research Quarterly, 1 (1998), 5-20.

[10]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value at risk, Journal of Risk, 2 (2000), 21-41.

[11]

R. T. Rockafellar and S. Uryasev, Conditional value at risk for general loss distributions, Journal of Banking and Finance, 26 (2002), 1443-1471. doi: 10.1016/S0378-4266(02)00271-6.

[12]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model, Journal of Industrial and Management Optimization, 8 (2012), 343-362. doi: 10.3934/jimo.2012.8.343.

[13]

T. Tarnopolskaya, J. Tabak and F. R. de Hoog, L-curve for hedging instrument selection in CVaR-minimising portfolio hedging, in "18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation" (eds. R. S. Anderssen et al), (2009), 1559-1565.

[14]

N. Topaloglou, H. Vladimirou and S. A. Zenios, CVaR models with selective hedging for international asset allocation, Journal of Banking and Finance, 26 (2002), 1535-1561. doi: 10.1016/S0378-4266(02)00289-3.

[15]

S. P. Uryasev and R. T. Rockafellar, Conditional value-at-risk: Optimization approach, Stochastic Optimization: Algorithms and Applications, 54 (2001), 411-435.

[1]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[2]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[3]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[4]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial and Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[5]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial and Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[6]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[7]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial and Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[8]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1635-1654. doi: 10.3934/jimo.2019021

[9]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial and Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[10]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2425-2437. doi: 10.3934/jimo.2019061

[11]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[12]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[13]

Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics and Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471

[14]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[15]

Gautier Picot. Energy-minimal transfers in the vicinity of the lagrangian point $L_1$. Conference Publications, 2011, 2011 (Special) : 1196-1205. doi: 10.3934/proc.2011.2011.1196

[16]

Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems and Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257

[17]

Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems and Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199

[18]

Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear second-order conic programming problem. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3085-3098. doi: 10.3934/jimo.2020108

[19]

Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965

[20]

Zhaohui Guo, Stanley Osher. Template matching via $l_1$ minimization and its application to hyperspectral data. Inverse Problems and Imaging, 2011, 5 (1) : 19-35. doi: 10.3934/ipi.2011.5.19

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]