January  2013, 9(1): 205-225. doi: 10.3934/jimo.2013.9.205

Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system

1. 

Department of Information Engineering, Kun Shan University, Taiwan

Received  September 2011 Revised  June 2012 Published  December 2012

This paper focuses on empirical design and performs real data test of a novel algorithm that contributes to the purpose of solving a specific SIP problem arising from a classical wideband active sonar echo location system in noisy environment. The algorithm is achieved by firstly isolating potential contact signals of interest embedded in the scattered returns through the first-stage denoising using an adaptive noise canceling (ANC) neuro-fuzzy scheme. The ANC output is then feed into an iterative target motion analysis (TMA) scheme composed of the second-stage denoising and optimal motion estimation. In the first-stage denoising, the adaptive neuro-fuzzy inference system (ANFIS) is the core processor of ANC for tracking both the linear and nonlinear relations among complex contact signals. The second-stage denoising is appealed for further noise compression and is accomplished via trimmed-mean (TM) levelization and discrete wavelet denoising (WDeN). The two-stage comprehensive denoising techniques yield fine tuned signals for the system deconvolution based on solving a semi-infinite programming (SIP) problem. These two schemes form an ANC-TMA(CWT) algorithm for rapid processing of target echoes and provide a higher degree of signal detection capability with an increased robustness against false signal detections. Advantages and simulation results are discussed in terms of detection performance and computational time consumption.
Citation: Chien Hsun Tseng. Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system. Journal of Industrial & Management Optimization, 2013, 9 (1) : 205-225. doi: 10.3934/jimo.2013.9.205
References:
[1]

W. S. Burdic, "Underwater Acoustic System Analysis,", Prentice Hall, (1991).   Google Scholar

[2]

P. C. Etter, "Underwater Acoustic Modeling: Principles, Techniques and Applications,", London: E&FN Spon, (1996).   Google Scholar

[3]

H. Van Trees, "Detection, Estimation, and Modulation Theory, Parts I, II, III,", Wiley, (1968).   Google Scholar

[4]

R. A. Altes, Target position estimation in radar and sonar, generalized ambiguity analysis for maximum likelihood parameter estimation,, Proc. IEEE, 67 (1979), 920.  doi: 10.1109/PROC.1979.11355.  Google Scholar

[5]

E. J. Kelly and R. P. Wishner, Matched-filter theory for high-velocity targets,, IEEE Trans. Military Elect., 9 (1965), 56.  doi: 10.1109/TME.1965.4323176.  Google Scholar

[6]

A. Carlson, P. Crilly and J. Rutledge, "Communication Systems-An Introduction to Signals and Noise in Electrical Communication,", e/4, (2002).   Google Scholar

[7]

L. G. Weiss, Wavelets and wideband correlation processing,, IEEE Signal Processing Magazine, (1994), 13.  doi: 10.1109/79.252866.  Google Scholar

[8]

H. Sibul and G. Weiss, A wideband wavelet based estimator correlator and its properties,, Multidimensional Systems and Signal Processing, 13 (2002), 157.  doi: 10.1023/A:1014488726761.  Google Scholar

[9]

H. Naparst, Dense target signal processing,, IEEE Trans. Inform. Theory, 37 (1991), 317.  doi: 10.1109/18.75247.  Google Scholar

[10]

T. Kadota and D. Romain, Optimum detection of Gaussian signal fields in the multipath-anisotropic noise environment and numerical evaluation of detection probabilities,, IEEE Trans. Information Theory, 23 (1977), 164.   Google Scholar

[11]

P. Delaney and D. Walsh, Performance analysis of the incoherent and skewness matched filter detectors in multipath environments,, IEEE Journal of Oceanic Engineering, 20 (1995), 80.  doi: 10.1109/48.380243.  Google Scholar

[12]

C. H. Tseng and M. Cole, Adaptive neuro-fuzzy inference systems for wideband signal recovery in a noise-limited environment,, FUZZ-IEEE, 2007 (): 757.   Google Scholar

[13]

C. H. Tseng and M. Cole, Optimum multi-target detection using an ANC neuro-fuzzy scheme and wideband replica correlator,, IEEE ICASSP, 2009 (): 1369.   Google Scholar

[14]

B. Widrow et al., Adaptive noise cancelling: Principles and applications,, IEEE Proc., 63 (1975), 1692.   Google Scholar

[15]

J-S R. Jang, C. T. Sun and E. Mizutani, "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence,", Pearson Education Taiwan Ltd., (2004).   Google Scholar

[16]

O. Kipersztok, Active control of broadband noise using fuzzy logic,, Proc. IEEE Int. Conf. Fuzzy Sys., II (1993), 906.   Google Scholar

[17]

O. Kipersztok and H. Ron, Fuzzy active control of a distributed broadband noise source,, Proc. IEEE Int. Conf. Fuzzy Sys., II (1994), 1342.  doi: 10.1109/FUZZY.1994.343617.  Google Scholar

[18]

S. Haykin, "Adaptive Filter Theory,", e/4, (2001).   Google Scholar

[19]

"Xilinx DSP (2005): Designing for Optimal Results: High-Performance Dsp Using Virtex-4 FPGAs,", DSP solution advanced design guide,, e/1, ().   Google Scholar

[20]

R. William and D. Zipser, A learning algorithm for continually running fully recurrent neural networks,, Neural Computation, 1 (1989), 270.  doi: 10.1162/neco.1989.1.2.270.  Google Scholar

[21]

Q. Zhang and A. Benveniste, Wavelet networks,, IEEE, 3 (1992), 889.  doi: 10.1109/72.165591.  Google Scholar

[22]

D. L. Donoho, De-Noising by soft-thresholding,, IEEE Trans. on Inf. Theory, 41 (1995), 613.  doi: 10.1109/18.382009.  Google Scholar

[23]

P. P. Gandhi and S. A. Kassam, Analysis of CFAR processors in nonhomogenous background,, IEEE Trans. Aerosp. Electron. Syst., 24 (1988), 427.  doi: 10.1109/7.7185.  Google Scholar

[24]

D. A. Abraham and P. K. Willett, Active sonar detection in shallow water using the page test,, IEEE Oceanic Eng., 27 (2002), 35.  doi: 10.1109/48.989883.  Google Scholar

[25]

T. G. Manickam, R. J. Vaccaro and D. W. Tufts, A least-squares algorithm for multipath time-delay estimation,, IEEE Trans. Signal Processing, 42 (1994), 3229.  doi: 10.1109/78.330381.  Google Scholar

[26]

M. A. Mansour, B. V. Smith and J. A. Edwards, PC-based real-time active sonar simulator,, IEE Proc.-Radar, 144 (1997), 227.  doi: 10.1049/ip-rsn:19971260.  Google Scholar

[27]

S. Stein, Algorithm for ambiguity function processing,, IEEE Trans. Acoust. Speech Signal Proc., 29 (1981), 588.  doi: 10.1109/TASSP.1981.1163621.  Google Scholar

[28]

L. Auslander and I. Gertner, Wideband ambiguity function generation and $ax+b$ group,, from Signal Processing, 1 (1990), 1.   Google Scholar

[29]

D. Alexandrou and C. D. Moustier, Adaptive noise canceling applied to sea beam sidelobe interference rejection,, IEEE J. Oceanic Eng., 13 (1988), 70.  doi: 10.1109/48.556.  Google Scholar

[30]

O. Rioul and M. Vetterli, Wavelets and signal processing,, IEEE Signal Process. Magazine, (1991), 14.  doi: 10.1109/79.91217.  Google Scholar

[31]

S. Mallat, "A Wavelet Tour of Signal Processing,", 2nd edition, (1999).   Google Scholar

[32]

R. Young, "Wavelet Theory and Its Applications,", Kluwer Academic Publisher, (1993).   Google Scholar

[33]

R. P. Brent, "Algorithms for Minimization without Derivatives,", Prentice-Hall, (1973).   Google Scholar

[34]

D. Alexandrou, Signal recovery in a reverberation-limited environment,, IEEE Journal of Oceanic Engineering, 12 (1987), 553.  doi: 10.1109/JOE.1987.1145285.  Google Scholar

[35]

J. Sadowsky, Investigation of signal characteristics using the continuous wavelet transform,, Johns Hopkins APL Technical Digest, 17 (1996), 258.   Google Scholar

[36]

M. Aineto and S. Lawson, Narrowband signal detection in a reverberation-limited environment,, OCEAN'97. MTS/IEEE Proc., 1 (1997), 27.   Google Scholar

[37]

M. Sugeno, "Industrial Applications of Fuzzy Control,", Elsevier Science Pub. Co., (1985).   Google Scholar

show all references

References:
[1]

W. S. Burdic, "Underwater Acoustic System Analysis,", Prentice Hall, (1991).   Google Scholar

[2]

P. C. Etter, "Underwater Acoustic Modeling: Principles, Techniques and Applications,", London: E&FN Spon, (1996).   Google Scholar

[3]

H. Van Trees, "Detection, Estimation, and Modulation Theory, Parts I, II, III,", Wiley, (1968).   Google Scholar

[4]

R. A. Altes, Target position estimation in radar and sonar, generalized ambiguity analysis for maximum likelihood parameter estimation,, Proc. IEEE, 67 (1979), 920.  doi: 10.1109/PROC.1979.11355.  Google Scholar

[5]

E. J. Kelly and R. P. Wishner, Matched-filter theory for high-velocity targets,, IEEE Trans. Military Elect., 9 (1965), 56.  doi: 10.1109/TME.1965.4323176.  Google Scholar

[6]

A. Carlson, P. Crilly and J. Rutledge, "Communication Systems-An Introduction to Signals and Noise in Electrical Communication,", e/4, (2002).   Google Scholar

[7]

L. G. Weiss, Wavelets and wideband correlation processing,, IEEE Signal Processing Magazine, (1994), 13.  doi: 10.1109/79.252866.  Google Scholar

[8]

H. Sibul and G. Weiss, A wideband wavelet based estimator correlator and its properties,, Multidimensional Systems and Signal Processing, 13 (2002), 157.  doi: 10.1023/A:1014488726761.  Google Scholar

[9]

H. Naparst, Dense target signal processing,, IEEE Trans. Inform. Theory, 37 (1991), 317.  doi: 10.1109/18.75247.  Google Scholar

[10]

T. Kadota and D. Romain, Optimum detection of Gaussian signal fields in the multipath-anisotropic noise environment and numerical evaluation of detection probabilities,, IEEE Trans. Information Theory, 23 (1977), 164.   Google Scholar

[11]

P. Delaney and D. Walsh, Performance analysis of the incoherent and skewness matched filter detectors in multipath environments,, IEEE Journal of Oceanic Engineering, 20 (1995), 80.  doi: 10.1109/48.380243.  Google Scholar

[12]

C. H. Tseng and M. Cole, Adaptive neuro-fuzzy inference systems for wideband signal recovery in a noise-limited environment,, FUZZ-IEEE, 2007 (): 757.   Google Scholar

[13]

C. H. Tseng and M. Cole, Optimum multi-target detection using an ANC neuro-fuzzy scheme and wideband replica correlator,, IEEE ICASSP, 2009 (): 1369.   Google Scholar

[14]

B. Widrow et al., Adaptive noise cancelling: Principles and applications,, IEEE Proc., 63 (1975), 1692.   Google Scholar

[15]

J-S R. Jang, C. T. Sun and E. Mizutani, "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence,", Pearson Education Taiwan Ltd., (2004).   Google Scholar

[16]

O. Kipersztok, Active control of broadband noise using fuzzy logic,, Proc. IEEE Int. Conf. Fuzzy Sys., II (1993), 906.   Google Scholar

[17]

O. Kipersztok and H. Ron, Fuzzy active control of a distributed broadband noise source,, Proc. IEEE Int. Conf. Fuzzy Sys., II (1994), 1342.  doi: 10.1109/FUZZY.1994.343617.  Google Scholar

[18]

S. Haykin, "Adaptive Filter Theory,", e/4, (2001).   Google Scholar

[19]

"Xilinx DSP (2005): Designing for Optimal Results: High-Performance Dsp Using Virtex-4 FPGAs,", DSP solution advanced design guide,, e/1, ().   Google Scholar

[20]

R. William and D. Zipser, A learning algorithm for continually running fully recurrent neural networks,, Neural Computation, 1 (1989), 270.  doi: 10.1162/neco.1989.1.2.270.  Google Scholar

[21]

Q. Zhang and A. Benveniste, Wavelet networks,, IEEE, 3 (1992), 889.  doi: 10.1109/72.165591.  Google Scholar

[22]

D. L. Donoho, De-Noising by soft-thresholding,, IEEE Trans. on Inf. Theory, 41 (1995), 613.  doi: 10.1109/18.382009.  Google Scholar

[23]

P. P. Gandhi and S. A. Kassam, Analysis of CFAR processors in nonhomogenous background,, IEEE Trans. Aerosp. Electron. Syst., 24 (1988), 427.  doi: 10.1109/7.7185.  Google Scholar

[24]

D. A. Abraham and P. K. Willett, Active sonar detection in shallow water using the page test,, IEEE Oceanic Eng., 27 (2002), 35.  doi: 10.1109/48.989883.  Google Scholar

[25]

T. G. Manickam, R. J. Vaccaro and D. W. Tufts, A least-squares algorithm for multipath time-delay estimation,, IEEE Trans. Signal Processing, 42 (1994), 3229.  doi: 10.1109/78.330381.  Google Scholar

[26]

M. A. Mansour, B. V. Smith and J. A. Edwards, PC-based real-time active sonar simulator,, IEE Proc.-Radar, 144 (1997), 227.  doi: 10.1049/ip-rsn:19971260.  Google Scholar

[27]

S. Stein, Algorithm for ambiguity function processing,, IEEE Trans. Acoust. Speech Signal Proc., 29 (1981), 588.  doi: 10.1109/TASSP.1981.1163621.  Google Scholar

[28]

L. Auslander and I. Gertner, Wideband ambiguity function generation and $ax+b$ group,, from Signal Processing, 1 (1990), 1.   Google Scholar

[29]

D. Alexandrou and C. D. Moustier, Adaptive noise canceling applied to sea beam sidelobe interference rejection,, IEEE J. Oceanic Eng., 13 (1988), 70.  doi: 10.1109/48.556.  Google Scholar

[30]

O. Rioul and M. Vetterli, Wavelets and signal processing,, IEEE Signal Process. Magazine, (1991), 14.  doi: 10.1109/79.91217.  Google Scholar

[31]

S. Mallat, "A Wavelet Tour of Signal Processing,", 2nd edition, (1999).   Google Scholar

[32]

R. Young, "Wavelet Theory and Its Applications,", Kluwer Academic Publisher, (1993).   Google Scholar

[33]

R. P. Brent, "Algorithms for Minimization without Derivatives,", Prentice-Hall, (1973).   Google Scholar

[34]

D. Alexandrou, Signal recovery in a reverberation-limited environment,, IEEE Journal of Oceanic Engineering, 12 (1987), 553.  doi: 10.1109/JOE.1987.1145285.  Google Scholar

[35]

J. Sadowsky, Investigation of signal characteristics using the continuous wavelet transform,, Johns Hopkins APL Technical Digest, 17 (1996), 258.   Google Scholar

[36]

M. Aineto and S. Lawson, Narrowband signal detection in a reverberation-limited environment,, OCEAN'97. MTS/IEEE Proc., 1 (1997), 27.   Google Scholar

[37]

M. Sugeno, "Industrial Applications of Fuzzy Control,", Elsevier Science Pub. Co., (1985).   Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[3]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[4]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[7]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[8]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[9]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]