-
Previous Article
An outcome space algorithm for minimizing the product of two convex functions over a convex set
- JIMO Home
- This Issue
-
Next Article
Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system
On the Levenberg-Marquardt methods for convex constrained nonlinear equations
1. | Department of Mathematics, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China |
References:
[1] |
S. Bellavia, M. Macconi and B. Morini, An affine scaling trust-region approach to bound-constrained nonlinear systems, Appl. Numer. Math., 44 (2003), 257-280.
doi: 10.1016/S0168-9274(02)00170-8. |
[2] |
S. Bellavia and B. Morini, An interior global method for nonlinear systems with simple bounds, Optim. Methods Software, 20 (2005), 1-22. |
[3] |
H. Dan, N. Yamashita and M. Fukushima, Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions, Optim. Meth. Software, 17 (2002), 605-626. |
[4] |
J. E. Dennis and R. B. Schnabel, "Numerical Methods for Unconstrained Optimization and Nonlinear Equations," Prentice-Hall, Englewood Cliffs, NJ, 1983. |
[5] |
S. P. Dirkse, M. C. Ferris, MCPLIB: a collection of nonlinear mixed complementarity problems, Optim. Meth. Software, 5 (1995), 319-345.
doi: 10.1080/10556789508805619. |
[6] |
M. E. El-Hawary, "Optimal Power Flow: Solutions Techniques, Requirements, and Challenges," IEEE Service Center, Piscataway, New Jersey, 1996. |
[7] |
J. Y. Fan and J. Y. Pan, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition, Computational Optimization and Applications, 34 (2006), 47-62. |
[8] |
J. Y. Fan and Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23-39.
doi: 10.1007/s00607-004-0083-1. |
[9] |
C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer and C. A. Schweiger, "Handbook of Test Problems in Local and Global Optimization, Nonconvex Optimization and its Applications," Vol. 33, Kluwer Academic Publishers, The Netherlands, 1999. |
[10] |
W. Hock and K. Schittkowski, "Test Examples for Nonlinear Programming Codes," Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer, New York, 1981. |
[11] |
C. Kanzow, An active set-type Newton method for constrained nonlinear systems, in "Complementarity: Applications, Algorithms and Extensions"(M. C. Ferris, O. L. Mangasarian and J. S. Pang eds.), Kluwer Academic, Dordrecht, 2001, pp 179-200. |
[12] |
C. Kanzow, N. Yamashita and M. Fukushima, Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, Journal of Computational and Applied Mathematics, 173 (2005), 321-343. |
[13] |
C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations," SIAM, Philadelphia, 1995. |
[14] |
D. N. Kozakevich, J. M. Martinez and S. A. Santos, Solving nonlinear systems of equations with simple bounds, Comput. Appl. Math., 16 (1997), 215-235. |
[15] |
K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2 (1944), 164-166. |
[16] |
D. W. Marquardt, An algorithm for least-squares estimation of nonlinear inequalities, SIAM J. Appl. Math., 11 (1963), 431-441. |
[17] |
K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361. |
[18] |
K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM Trans. Math. Software, 16 (1990), 143-151. |
[19] |
R. D. C. Monteiro and J. S. Pang, A potential reduction Newton method for constrained equations, SIAM J. Optim., 9 (1999), 729-754.
doi: 10.1137/S1052623497318980. |
[20] |
J. J. Moré, The LM algorithm: implementation and theory, in "Lecture Notes in Mathematics 630: Numerical Analysis"(G. A. Watson ed.), Springer-Verlag, Berlin, 1978, pp. 105-116. |
[21] |
J. M. Ortega and W. C. Rheinboldt, "Iterative solution of Nonlinear Equations in Several Variables," Academic Press, New York, 1970. |
[22] |
L. Qi, X. J. Tong and D. H. Li, An active-set projected trust region algorithm for box constrained nonsmooth equations, Journal of Optimization Theories and Applications, 120 (2004), 601-649. |
[23] |
M. Ulbrich, Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems, SIAM J. Optim., 11 (2001), 889-917. |
[24] |
T. Wang, R. D. C. Monteiro and J. S. Pang, An interior point potential reduction method for constrained equations, Math. Programming, 74 (1996), 159-195. |
[25] |
A. J. Wood and B. F. Wollenberg, "Power Generation, Operation, and Control," John Wiley and Sons, New York, NY, 1996. |
[26] |
N. Yamashita and M. Fukushima, On the rate of convergence of the LM method, Computing (Supplement 15), (2001), 237-249. |
[27] |
Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least sqaures, Numerical Algebra, Control and Optimization, 1 (2011), 15-34. |
show all references
References:
[1] |
S. Bellavia, M. Macconi and B. Morini, An affine scaling trust-region approach to bound-constrained nonlinear systems, Appl. Numer. Math., 44 (2003), 257-280.
doi: 10.1016/S0168-9274(02)00170-8. |
[2] |
S. Bellavia and B. Morini, An interior global method for nonlinear systems with simple bounds, Optim. Methods Software, 20 (2005), 1-22. |
[3] |
H. Dan, N. Yamashita and M. Fukushima, Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions, Optim. Meth. Software, 17 (2002), 605-626. |
[4] |
J. E. Dennis and R. B. Schnabel, "Numerical Methods for Unconstrained Optimization and Nonlinear Equations," Prentice-Hall, Englewood Cliffs, NJ, 1983. |
[5] |
S. P. Dirkse, M. C. Ferris, MCPLIB: a collection of nonlinear mixed complementarity problems, Optim. Meth. Software, 5 (1995), 319-345.
doi: 10.1080/10556789508805619. |
[6] |
M. E. El-Hawary, "Optimal Power Flow: Solutions Techniques, Requirements, and Challenges," IEEE Service Center, Piscataway, New Jersey, 1996. |
[7] |
J. Y. Fan and J. Y. Pan, Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition, Computational Optimization and Applications, 34 (2006), 47-62. |
[8] |
J. Y. Fan and Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23-39.
doi: 10.1007/s00607-004-0083-1. |
[9] |
C. A. Floudas, P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer and C. A. Schweiger, "Handbook of Test Problems in Local and Global Optimization, Nonconvex Optimization and its Applications," Vol. 33, Kluwer Academic Publishers, The Netherlands, 1999. |
[10] |
W. Hock and K. Schittkowski, "Test Examples for Nonlinear Programming Codes," Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer, New York, 1981. |
[11] |
C. Kanzow, An active set-type Newton method for constrained nonlinear systems, in "Complementarity: Applications, Algorithms and Extensions"(M. C. Ferris, O. L. Mangasarian and J. S. Pang eds.), Kluwer Academic, Dordrecht, 2001, pp 179-200. |
[12] |
C. Kanzow, N. Yamashita and M. Fukushima, Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints, Journal of Computational and Applied Mathematics, 173 (2005), 321-343. |
[13] |
C. T. Kelley, "Iterative Methods for Linear and Nonlinear Equations," SIAM, Philadelphia, 1995. |
[14] |
D. N. Kozakevich, J. M. Martinez and S. A. Santos, Solving nonlinear systems of equations with simple bounds, Comput. Appl. Math., 16 (1997), 215-235. |
[15] |
K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2 (1944), 164-166. |
[16] |
D. W. Marquardt, An algorithm for least-squares estimation of nonlinear inequalities, SIAM J. Appl. Math., 11 (1963), 431-441. |
[17] |
K. Meintjes and A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333-361. |
[18] |
K. Meintjes and A. P. Morgan, Chemical equilibrium systems as numerical test problems, ACM Trans. Math. Software, 16 (1990), 143-151. |
[19] |
R. D. C. Monteiro and J. S. Pang, A potential reduction Newton method for constrained equations, SIAM J. Optim., 9 (1999), 729-754.
doi: 10.1137/S1052623497318980. |
[20] |
J. J. Moré, The LM algorithm: implementation and theory, in "Lecture Notes in Mathematics 630: Numerical Analysis"(G. A. Watson ed.), Springer-Verlag, Berlin, 1978, pp. 105-116. |
[21] |
J. M. Ortega and W. C. Rheinboldt, "Iterative solution of Nonlinear Equations in Several Variables," Academic Press, New York, 1970. |
[22] |
L. Qi, X. J. Tong and D. H. Li, An active-set projected trust region algorithm for box constrained nonsmooth equations, Journal of Optimization Theories and Applications, 120 (2004), 601-649. |
[23] |
M. Ulbrich, Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems, SIAM J. Optim., 11 (2001), 889-917. |
[24] |
T. Wang, R. D. C. Monteiro and J. S. Pang, An interior point potential reduction method for constrained equations, Math. Programming, 74 (1996), 159-195. |
[25] |
A. J. Wood and B. F. Wollenberg, "Power Generation, Operation, and Control," John Wiley and Sons, New York, NY, 1996. |
[26] |
N. Yamashita and M. Fukushima, On the rate of convergence of the LM method, Computing (Supplement 15), (2001), 237-249. |
[27] |
Y. X. Yuan, Recent advances in numerical methods for nonlinear equations and nonlinear least sqaures, Numerical Algebra, Control and Optimization, 1 (2011), 15-34. |
[1] |
Jinyan Fan, Jianyu Pan. Inexact Levenberg-Marquardt method for nonlinear equations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1223-1232. doi: 10.3934/dcdsb.2004.4.1223 |
[2] |
Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068 |
[3] |
Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial and Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199 |
[4] |
Liyan Qi, Xiantao Xiao, Liwei Zhang. On the global convergence of a parameter-adjusting Levenberg-Marquardt method. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 25-36. doi: 10.3934/naco.2015.5.25 |
[5] |
Xin-He Miao, Kai Yao, Ching-Yu Yang, Jein-Shan Chen. Levenberg-Marquardt method for absolute value equation associated with second-order cone. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 47-61. doi: 10.3934/naco.2021050 |
[6] |
Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems and Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335 |
[7] |
Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial and Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775 |
[8] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial and Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[9] |
Jinkui Liu, Shengjie Li. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial and Management Optimization, 2017, 13 (1) : 283-295. doi: 10.3934/jimo.2016017 |
[10] |
Abdulkarim Hassan Ibrahim, Jitsupa Deepho, Auwal Bala Abubakar, Kazeem Olalekan Aremu. A modified Liu-Storey-Conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 569-582. doi: 10.3934/naco.2021022 |
[11] |
Xiaojiao Tong, Shuzi Zhou. A smoothing projected Newton-type method for semismooth equations with bound constraints. Journal of Industrial and Management Optimization, 2005, 1 (2) : 235-250. doi: 10.3934/jimo.2005.1.235 |
[12] |
Yuan Shen, Chang Liu, Yannian Zuo, Xingying Zhang. A modified self-adaptive dual ascent method with relaxed stepsize condition for linearly constrained quadratic convex optimization. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022101 |
[13] |
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353 |
[14] |
Chunming Tang, Jinbao Jian, Guoyin Li. A proximal-projection partial bundle method for convex constrained minimax problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 757-774. doi: 10.3934/jimo.2018069 |
[15] |
Luchuan Ceng, Qamrul Hasan Ansari, Jen-Chih Yao. Extragradient-projection method for solving constrained convex minimization problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 341-359. doi: 10.3934/naco.2011.1.341 |
[16] |
Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2675-2701. doi: 10.3934/jimo.2019075 |
[17] |
Jirui Ma, Jinyan Fan. On convergence properties of the modified trust region method under Hölderian error bound condition. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021222 |
[18] |
Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507 |
[19] |
Yanfei You, Suhong Jiang. Improved Lagrangian-PPA based prediction correction method for linearly constrained convex optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021174 |
[20] |
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]