-
Previous Article
An outcome space algorithm for minimizing the product of two convex functions over a convex set
- JIMO Home
- This Issue
-
Next Article
Applications of a nonlinear optimization solver and two-stage comprehensive Denoising techniques for optimum underwater wideband sonar echolocation system
On the Levenberg-Marquardt methods for convex constrained nonlinear equations
1. | Department of Mathematics, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China |
References:
[1] |
Appl. Numer. Math., 44 (2003), 257-280.
doi: 10.1016/S0168-9274(02)00170-8. |
[2] |
Optim. Methods Software, 20 (2005), 1-22. |
[3] |
Optim. Meth. Software, 17 (2002), 605-626. |
[4] |
Prentice-Hall, Englewood Cliffs, NJ, 1983. |
[5] |
Optim. Meth. Software, 5 (1995), 319-345.
doi: 10.1080/10556789508805619. |
[6] |
IEEE Service Center, Piscataway, New Jersey, 1996. Google Scholar |
[7] |
Computational Optimization and Applications, 34 (2006), 47-62. |
[8] |
Computing, 74 (2005), 23-39.
doi: 10.1007/s00607-004-0083-1. |
[9] |
Vol. 33, Kluwer Academic Publishers, The Netherlands, 1999. |
[10] |
Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer, New York, 1981. |
[11] |
in "Complementarity: Applications, Algorithms and Extensions"(M. C. Ferris, O. L. Mangasarian and J. S. Pang eds.), Kluwer Academic, Dordrecht, 2001, pp 179-200. |
[12] |
Journal of Computational and Applied Mathematics, 173 (2005), 321-343. |
[13] |
SIAM, Philadelphia, 1995. |
[14] |
Comput. Appl. Math., 16 (1997), 215-235. |
[15] |
Quart. Appl. Math., 2 (1944), 164-166. |
[16] |
SIAM J. Appl. Math., 11 (1963), 431-441. |
[17] |
Appl. Math. Comput., 22 (1987), 333-361. |
[18] |
ACM Trans. Math. Software, 16 (1990), 143-151. Google Scholar |
[19] |
SIAM J. Optim., 9 (1999), 729-754.
doi: 10.1137/S1052623497318980. |
[20] |
in "Lecture Notes in Mathematics 630: Numerical Analysis"(G. A. Watson ed.), Springer-Verlag, Berlin, 1978, pp. 105-116. |
[21] |
Academic Press, New York, 1970. |
[22] |
Journal of Optimization Theories and Applications, 120 (2004), 601-649. |
[23] |
SIAM J. Optim., 11 (2001), 889-917. |
[24] |
Math. Programming, 74 (1996), 159-195. |
[25] |
John Wiley and Sons, New York, NY, 1996. Google Scholar |
[26] |
Computing (Supplement 15), (2001), 237-249. Google Scholar |
[27] |
Numerical Algebra, Control and Optimization, 1 (2011), 15-34. |
show all references
References:
[1] |
Appl. Numer. Math., 44 (2003), 257-280.
doi: 10.1016/S0168-9274(02)00170-8. |
[2] |
Optim. Methods Software, 20 (2005), 1-22. |
[3] |
Optim. Meth. Software, 17 (2002), 605-626. |
[4] |
Prentice-Hall, Englewood Cliffs, NJ, 1983. |
[5] |
Optim. Meth. Software, 5 (1995), 319-345.
doi: 10.1080/10556789508805619. |
[6] |
IEEE Service Center, Piscataway, New Jersey, 1996. Google Scholar |
[7] |
Computational Optimization and Applications, 34 (2006), 47-62. |
[8] |
Computing, 74 (2005), 23-39.
doi: 10.1007/s00607-004-0083-1. |
[9] |
Vol. 33, Kluwer Academic Publishers, The Netherlands, 1999. |
[10] |
Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer, New York, 1981. |
[11] |
in "Complementarity: Applications, Algorithms and Extensions"(M. C. Ferris, O. L. Mangasarian and J. S. Pang eds.), Kluwer Academic, Dordrecht, 2001, pp 179-200. |
[12] |
Journal of Computational and Applied Mathematics, 173 (2005), 321-343. |
[13] |
SIAM, Philadelphia, 1995. |
[14] |
Comput. Appl. Math., 16 (1997), 215-235. |
[15] |
Quart. Appl. Math., 2 (1944), 164-166. |
[16] |
SIAM J. Appl. Math., 11 (1963), 431-441. |
[17] |
Appl. Math. Comput., 22 (1987), 333-361. |
[18] |
ACM Trans. Math. Software, 16 (1990), 143-151. Google Scholar |
[19] |
SIAM J. Optim., 9 (1999), 729-754.
doi: 10.1137/S1052623497318980. |
[20] |
in "Lecture Notes in Mathematics 630: Numerical Analysis"(G. A. Watson ed.), Springer-Verlag, Berlin, 1978, pp. 105-116. |
[21] |
Academic Press, New York, 1970. |
[22] |
Journal of Optimization Theories and Applications, 120 (2004), 601-649. |
[23] |
SIAM J. Optim., 11 (2001), 889-917. |
[24] |
Math. Programming, 74 (1996), 159-195. |
[25] |
John Wiley and Sons, New York, NY, 1996. Google Scholar |
[26] |
Computing (Supplement 15), (2001), 237-249. Google Scholar |
[27] |
Numerical Algebra, Control and Optimization, 1 (2011), 15-34. |
[1] |
Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068 |
[2] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[3] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[4] |
Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034 |
[5] |
Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021080 |
[6] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[7] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[8] |
Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040 |
[9] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[10] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[11] |
Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030 |
[12] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[13] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[14] |
Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021042 |
[15] |
Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021054 |
[16] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[17] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[18] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[19] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[20] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]