• Previous Article
    Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities
  • JIMO Home
  • This Issue
  • Next Article
    On the Levenberg-Marquardt methods for convex constrained nonlinear equations
January  2013, 9(1): 243-253. doi: 10.3934/jimo.2013.9.243

An outcome space algorithm for minimizing the product of two convex functions over a convex set

1. 

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, N01 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam, Vietnam, Vietnam

Received  June 2011 Revised  July 2012 Published  December 2012

This paper presents an outcome-space outer approximation algorithm for solving the problem of minimizing the product of two convex functions over a compact convex set in $\mathbb{R}^n$. The computational experiences are reported. The proposed algorithm is convergent.
Citation: Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243
References:
[1]

H. P. Benson and G. M. Boger, Multiplicative programming problems: Analysis and efficient point search heuristic,, Journal of Optimization Theory and Applications, 94 (1997), 487.  doi: 10.1023/A:1022600232285.  Google Scholar

[2]

H. P. Benson and G. M. Boger, Outcome-space cutting-plane algorithm for linear multiplicative programming,, Journal of Optimization Theory and Applications, 104 (2000), 301.  doi: 10.1023/A:1004657629105.  Google Scholar

[3]

H. P. Benson, An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming,, Journal of Global Optimization, 15 (1999), 315.  doi: 10.1023/A:1008316429329.  Google Scholar

[4]

Y. Gao, G. Wu and W. Ma, A new global optimization approach for convex multiplicative programming,, Applied Mathematics and Computation, 216 (2010), 1206.  doi: 10.1016/j.amc.2010.02.012.  Google Scholar

[5]

R. Hosrt, N. V. Thoai and J. Devries, On finding the new vertices and redundant constraints in cutting plane algorithms for global optimization,, Operations Research Letters, 7 (1988), 85.  doi: 10.1016/0167-6377(88)90071-5.  Google Scholar

[6]

B. Jaumard, C. Meyer and H. Tuy, Generalized convex multiplicative programming via quasiconcave minimization,, Journal of Global Optimization, 10 (1997), 229.  doi: 10.1023/A:1008203116882.  Google Scholar

[7]

N. T. B. Kim, Finite algorithm for minimizing the product of two linear functions over a polyhedron,, Journal Industrial and Management Optimization, 3 (2007), 481.  doi: 10.3934/jimo.2007.3.481.  Google Scholar

[8]

N. T. B. Kim, N. T. L. Trang and T. T. H. Yen, Outcome-space outer approximation algorithm for linear multiplicative programming,, East West Journal of Mathematics, 9 (2007), 81.   Google Scholar

[9]

H. Konno and T. Kuno, Linear multiplicative programming,, Mathematical Programming, 56 (1992), 51.  doi: 10.1007/BF01580893.  Google Scholar

[10]

H. Konno and T. Kuno, Multiplicative programming problems,, Handbook of Global Optimization, (1995), 369.   Google Scholar

[11]

D. T. Luc, "Theory of Vector Optimization,", Springer-Verlag, (1989).  doi: 10.1007/978-3-642-50280-4.  Google Scholar

[12]

T. Matsui, NP-hardness of linear multiplicative programming and related problems,, Journal of Global Optimization, 9 (1996), 113.  doi: 10.1007/BF00121658.  Google Scholar

[13]

L. D. Muu and B. T. Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set,, Optimization, 24 (1992), 57.  doi: 10.1080/02331939208843779.  Google Scholar

[14]

H. X. Phu, On efficient sets in $\mathbbR^2$,, Vietnam Journal of Mathematics, 33 (2005), 463.   Google Scholar

[15]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).   Google Scholar

[16]

T. V. Thieu, A finite method for globally minimizing concave function over unbounded polyhedral convex sets and its applications,, Acta Mathematica Hungarica, 52 (1988), 21.  doi: 10.1007/BF01952475.  Google Scholar

[17]

N. V. Thoai, A global optimization approach for solving the convex multiplicative programming problem,, Journal of Global Optimization, 1 (1991), 341.  doi: 10.1007/BF00130830.  Google Scholar

[18]

P. L. Yu, "Multiple-Criteria Decision Making,", Plenum Press, (1985).  doi: 10.1007/978-1-4684-8395-6.  Google Scholar

show all references

References:
[1]

H. P. Benson and G. M. Boger, Multiplicative programming problems: Analysis and efficient point search heuristic,, Journal of Optimization Theory and Applications, 94 (1997), 487.  doi: 10.1023/A:1022600232285.  Google Scholar

[2]

H. P. Benson and G. M. Boger, Outcome-space cutting-plane algorithm for linear multiplicative programming,, Journal of Optimization Theory and Applications, 104 (2000), 301.  doi: 10.1023/A:1004657629105.  Google Scholar

[3]

H. P. Benson, An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming,, Journal of Global Optimization, 15 (1999), 315.  doi: 10.1023/A:1008316429329.  Google Scholar

[4]

Y. Gao, G. Wu and W. Ma, A new global optimization approach for convex multiplicative programming,, Applied Mathematics and Computation, 216 (2010), 1206.  doi: 10.1016/j.amc.2010.02.012.  Google Scholar

[5]

R. Hosrt, N. V. Thoai and J. Devries, On finding the new vertices and redundant constraints in cutting plane algorithms for global optimization,, Operations Research Letters, 7 (1988), 85.  doi: 10.1016/0167-6377(88)90071-5.  Google Scholar

[6]

B. Jaumard, C. Meyer and H. Tuy, Generalized convex multiplicative programming via quasiconcave minimization,, Journal of Global Optimization, 10 (1997), 229.  doi: 10.1023/A:1008203116882.  Google Scholar

[7]

N. T. B. Kim, Finite algorithm for minimizing the product of two linear functions over a polyhedron,, Journal Industrial and Management Optimization, 3 (2007), 481.  doi: 10.3934/jimo.2007.3.481.  Google Scholar

[8]

N. T. B. Kim, N. T. L. Trang and T. T. H. Yen, Outcome-space outer approximation algorithm for linear multiplicative programming,, East West Journal of Mathematics, 9 (2007), 81.   Google Scholar

[9]

H. Konno and T. Kuno, Linear multiplicative programming,, Mathematical Programming, 56 (1992), 51.  doi: 10.1007/BF01580893.  Google Scholar

[10]

H. Konno and T. Kuno, Multiplicative programming problems,, Handbook of Global Optimization, (1995), 369.   Google Scholar

[11]

D. T. Luc, "Theory of Vector Optimization,", Springer-Verlag, (1989).  doi: 10.1007/978-3-642-50280-4.  Google Scholar

[12]

T. Matsui, NP-hardness of linear multiplicative programming and related problems,, Journal of Global Optimization, 9 (1996), 113.  doi: 10.1007/BF00121658.  Google Scholar

[13]

L. D. Muu and B. T. Tam, Minimizing the sum of a convex function and the product of two affine functions over a convex set,, Optimization, 24 (1992), 57.  doi: 10.1080/02331939208843779.  Google Scholar

[14]

H. X. Phu, On efficient sets in $\mathbbR^2$,, Vietnam Journal of Mathematics, 33 (2005), 463.   Google Scholar

[15]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1970).   Google Scholar

[16]

T. V. Thieu, A finite method for globally minimizing concave function over unbounded polyhedral convex sets and its applications,, Acta Mathematica Hungarica, 52 (1988), 21.  doi: 10.1007/BF01952475.  Google Scholar

[17]

N. V. Thoai, A global optimization approach for solving the convex multiplicative programming problem,, Journal of Global Optimization, 1 (1991), 341.  doi: 10.1007/BF00130830.  Google Scholar

[18]

P. L. Yu, "Multiple-Criteria Decision Making,", Plenum Press, (1985).  doi: 10.1007/978-1-4684-8395-6.  Google Scholar

[1]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[2]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[5]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[6]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[7]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[12]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[13]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[14]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[15]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[16]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[17]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[18]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[19]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[20]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

[Back to Top]