-
Previous Article
Analysis on Buyers' cooperative strategy under group-buying price mechanism
- JIMO Home
- This Issue
- Next Article
Electricity spot market with transmission losses
1. | Lab. PROMES, UPR 8521, Université de Perpignan, Perpignan, France, France |
2. | Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile |
References:
[1] |
E. J. Anderson and H. Xu, Supply function equilibrium in electricity spot markets with contracts and price caps,, J. Opt. Theory Appl., 124 (2005), 257.
doi: 10.1007/s10957-004-0924-2. |
[2] |
R. Baldick, Electricity market equilibrium models: The effect of paramatrization,, IEEE Transactions on Power Systems, 17 (2002), 1170. Google Scholar |
[3] |
R. Baldick and W. Hogan, Capacity constrained supply function equilibriam models of electricity markets: Stability, nondecreasing constraints, and function space iterations,, Paper PWP-089, (2001). Google Scholar |
[4] |
M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel programming problem,, J. Global Optim., 33 (2005), 465.
doi: 10.1007/s10898-004-1939-9. |
[5] |
F. Bolle, Supply function equilibria and the danger of tacit collution: The case of spot markets for electricity,, Energy Economics, 14 (1992), 94. Google Scholar |
[6] |
J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour,, SIAM Rev., 40 (1998), 228.
doi: 10.1137/S0036144596302644. |
[7] |
C. J. Day, B. F. Hobbs and J.-S. Pang, Oligopolistic competition in power networks: A conjectured supply function approach,, IEEE Transactions on Power Systems, 17 (2002), 597. Google Scholar |
[8] |
A. Downward, G. Zakeri and A. B. Philpott, On Cournot equilibria in electricity transmission networks,, Oper. Res., 58 (2010), 1194.
doi: 10.1287/opre.1100.0830. |
[9] |
J. Eichberger, "Game Theory for Economists,", Academic Press, (1993).
|
[10] |
J. F. Escobar and A. Jofré, Equilibrium analysis for a network model,, in, 81 (2006), 63.
doi: 10.1007/0-387-28654-3_3. |
[11] |
J. F. Escobar and A. Jofré, Monopolistic competition in electricity networks with resistance losses,, Econom. Theory, 44 (2010), 101.
doi: 10.1007/s00199-009-0460-2. |
[12] |
M. Fukushima and J.-S. Pang, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games,, Comput. Manag. Sci., 2 (2005), 21.
doi: 10.1007/s10287-004-0010-0. |
[13] |
R. J. Green and D. M. Newbery, Competition in the British electricity spot market,, J. of Political Economy, 100 (1992), 929. Google Scholar |
[14] |
R. Henrion, J. Outrata and T. Surowiec, Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model,, preprint, (2010). Google Scholar |
[15] |
B. F. Hobbs and J.-S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, IEEE Trans. Power Systems, 15 (2000), 638. Google Scholar |
[16] |
B. F. Hobbs and J.-S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures,, Math. Program. Ser. B, 101 (2004), 57.
doi: 10.1007/s10107-004-0537-4. |
[17] |
B. F. Hobbs and J.-S. Pang, Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints,, Oper. Research, 55 (2007), 113.
doi: 10.1287/opre.1060.0342. |
[18] |
X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with locational prices,, Oper. Res., 55 (2007), 809.
doi: 10.1287/opre.1070.0431. |
[19] |
P. D. Klemperer and M. A. Meyer, Supply function equilibria in oligopoly under uncertainty,, Econometrica, 57 (1989), 1243.
doi: 10.2307/1913707. |
[20] |
R. B. Myerson, "Game Theory. Analysis of Conflict,", Harvard University Press, (1991).
|
[21] |
N. K. Nair and L. X. Zhang, SmartGrid: Future networks for New Zealand power systems incorporating distributed generation,, Energy Policy, 37 (2009), 3418. Google Scholar |
[22] |
V. Nanduri and D. K. Das, A survey of critical research areas in the energy segment of restructured electric power markets,, Electrical Power and Energy Systems, 31 (2009), 181. Google Scholar |
[23] |
A. Rudkevich, Supply Function Equilibrium in Power Markets: Learning All the Way,, TCA Technical Paper, (1999), 1299. Google Scholar |
[24] |
B. Willems, I. Rumiantseva and H. Weigt, Cournot versus Supply Functions: What does the data tell us?,, Energy Economics, 31 (2009), 38. Google Scholar |
show all references
References:
[1] |
E. J. Anderson and H. Xu, Supply function equilibrium in electricity spot markets with contracts and price caps,, J. Opt. Theory Appl., 124 (2005), 257.
doi: 10.1007/s10957-004-0924-2. |
[2] |
R. Baldick, Electricity market equilibrium models: The effect of paramatrization,, IEEE Transactions on Power Systems, 17 (2002), 1170. Google Scholar |
[3] |
R. Baldick and W. Hogan, Capacity constrained supply function equilibriam models of electricity markets: Stability, nondecreasing constraints, and function space iterations,, Paper PWP-089, (2001). Google Scholar |
[4] |
M. Bjørndal and K. Jørnsten, The deregulated electricity market viewed as a bilevel programming problem,, J. Global Optim., 33 (2005), 465.
doi: 10.1007/s10898-004-1939-9. |
[5] |
F. Bolle, Supply function equilibria and the danger of tacit collution: The case of spot markets for electricity,, Energy Economics, 14 (1992), 94. Google Scholar |
[6] |
J. F. Bonnans and A. Shapiro, Optimization problems with perturbations: A guided tour,, SIAM Rev., 40 (1998), 228.
doi: 10.1137/S0036144596302644. |
[7] |
C. J. Day, B. F. Hobbs and J.-S. Pang, Oligopolistic competition in power networks: A conjectured supply function approach,, IEEE Transactions on Power Systems, 17 (2002), 597. Google Scholar |
[8] |
A. Downward, G. Zakeri and A. B. Philpott, On Cournot equilibria in electricity transmission networks,, Oper. Res., 58 (2010), 1194.
doi: 10.1287/opre.1100.0830. |
[9] |
J. Eichberger, "Game Theory for Economists,", Academic Press, (1993).
|
[10] |
J. F. Escobar and A. Jofré, Equilibrium analysis for a network model,, in, 81 (2006), 63.
doi: 10.1007/0-387-28654-3_3. |
[11] |
J. F. Escobar and A. Jofré, Monopolistic competition in electricity networks with resistance losses,, Econom. Theory, 44 (2010), 101.
doi: 10.1007/s00199-009-0460-2. |
[12] |
M. Fukushima and J.-S. Pang, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games,, Comput. Manag. Sci., 2 (2005), 21.
doi: 10.1007/s10287-004-0010-0. |
[13] |
R. J. Green and D. M. Newbery, Competition in the British electricity spot market,, J. of Political Economy, 100 (1992), 929. Google Scholar |
[14] |
R. Henrion, J. Outrata and T. Surowiec, Strong stationary solutions to equilibrium problems with equilibrium constraints with applications to an electricity spot market model,, preprint, (2010). Google Scholar |
[15] |
B. F. Hobbs and J.-S. Pang, Strategic gaming analysis for electric power systems: An MPEC approach,, IEEE Trans. Power Systems, 15 (2000), 638. Google Scholar |
[16] |
B. F. Hobbs and J.-S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures,, Math. Program. Ser. B, 101 (2004), 57.
doi: 10.1007/s10107-004-0537-4. |
[17] |
B. F. Hobbs and J.-S. Pang, Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints,, Oper. Research, 55 (2007), 113.
doi: 10.1287/opre.1060.0342. |
[18] |
X. Hu and D. Ralph, Using EPECs to model bilevel games in restructured electricity markets with locational prices,, Oper. Res., 55 (2007), 809.
doi: 10.1287/opre.1070.0431. |
[19] |
P. D. Klemperer and M. A. Meyer, Supply function equilibria in oligopoly under uncertainty,, Econometrica, 57 (1989), 1243.
doi: 10.2307/1913707. |
[20] |
R. B. Myerson, "Game Theory. Analysis of Conflict,", Harvard University Press, (1991).
|
[21] |
N. K. Nair and L. X. Zhang, SmartGrid: Future networks for New Zealand power systems incorporating distributed generation,, Energy Policy, 37 (2009), 3418. Google Scholar |
[22] |
V. Nanduri and D. K. Das, A survey of critical research areas in the energy segment of restructured electric power markets,, Electrical Power and Energy Systems, 31 (2009), 181. Google Scholar |
[23] |
A. Rudkevich, Supply Function Equilibrium in Power Markets: Learning All the Way,, TCA Technical Paper, (1999), 1299. Google Scholar |
[24] |
B. Willems, I. Rumiantseva and H. Weigt, Cournot versus Supply Functions: What does the data tell us?,, Energy Economics, 31 (2009), 38. Google Scholar |
[1] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[4] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[5] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[6] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[7] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
[8] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[9] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[10] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[11] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]