January  2013, 9(1): 31-56. doi: 10.3934/jimo.2013.9.31

Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects

1. 

State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China, China

Received  July 2011 Revised  May 2012 Published  December 2012

In this paper, production-distribution planning in construction supply chain management is investigated. A bi-level model for a production-distribution planning problem under a fuzzy random environment is presented. Construction projects, the leader in the hierarchy, not only control the allocation of items to each depot but are also responsible for ordering items from the manufacturing company. The manufacturing company, the follower in the hierarchy, reacts to these orders by deciding which manufacturing plants and production lines are going to be used. The model presented in this paper is able to handle such practical issues and is solved using an improved Artificial Bee Colony algorithm based on a fuzzy random simulation. A case study is presented to illustrate the effectiveness of the proposed approach. Conclusions and future research directions are discussed.
Citation: Jiuping Xu, Pei Wei. Production-distribution planning of construction supply chain management under fuzzy random environment for large-scale construction projects. Journal of Industrial & Management Optimization, 2013, 9 (1) : 31-56. doi: 10.3934/jimo.2013.9.31
References:
[1]

R. Arbulu, I. Tommelein, K. Walsh and J. Hershauer, Value stream analysis of re-engineered construction supply chain,, Building Research & Information, 31 (2003), 161.  doi: 10.1080/09613210301993.  Google Scholar

[2]

G. Avninder, Determining loading dock requirements in production-distribution facilities under uncertainty,, Computers & Industrial Engineering, 57 (2009), 161.  doi: 10.1016/j.cie.2008.11.002.  Google Scholar

[3]

B. Akay and D. Karaboga, "A modified Artificial Bee Colony Algorithm for Real-Parameter Optimization,", Information Sciences, (2010).   Google Scholar

[4]

I. Averbakh, On-line integrated production-distribution scheduling problems with capacitated deliveries,, European Journal of Operational Research, 200 (2010), 377.  doi: 10.1016/j.ejor.2008.12.030.  Google Scholar

[5]

O. Ben-Ayed, D. E. Boyce and C. E. Blair, A general bilevel linear programming formulation of the network design problem,, Transportation Research Part B: Methodological, 22 (1988), 311.  doi: 10.1016/0191-2615(88)90006-9.  Google Scholar

[6]

B. Bilgen and I. Ozkarahan, Strategic, tactical and operational production-distribution models: A review,, International Journal of Technology Management, 28 (2004), 151.  doi: 10.1504/IJTM.2004.005059.  Google Scholar

[7]

D. Barnes-Schuster, Y. Bassok and R. Anupindi, Optimizing delivery lead time/inventory placement in a two-stage production/distribution system,, European Journal of Operational Research, 174 (2006), 1664.  doi: 10.1016/j.ejor.2002.08.002.  Google Scholar

[8]

B. Bilgen, Application of fuzzy mathematical programming approach to the production allocation and distribution supply chain network problem,, Expert Systems with Applications, 37 (2010), 4488.  doi: 10.1016/j.eswa.2009.12.062.  Google Scholar

[9]

A. Cox and P. Ireland, Managing construction supply chains: The common sense approach,, Engineering, 9 (2002), 409.   Google Scholar

[10]

M. Cheong, R. Bhatnagar and S. Graves, Logistics network design with supplier consolidation hubs and multiple shipment options,, Journal of Industrial and Management Optimization, 3 (2007), 51.  doi: 10.3934/jimo.2007.3.51.  Google Scholar

[11]

F. Cheng, S. Yang, R. Akella and X. Tang, An integrated approach for selection of service vendors in service supply chain,, Journal of Industrial and Management Optimization, 7 (2011), 907.  doi: 10.3934/jimo.2011.7.907.  Google Scholar

[12]

H. I. Calvete, C. Galé and M. Oliveros, Bilevel model for production-distribution planning solved by using ant colony optimization,, Computers & Operations Research, 38 (2011), 320.  doi: 10.1016/j.cor.2010.05.007.  Google Scholar

[13]

K. Das and S. Sengupta, A hierarchical process industry production-distribution planning model,, International Journal of Production Economics, 117 (2009), 402.  doi: 10.1016/j.ijpe.2008.12.003.  Google Scholar

[14]

O. Dey and D. Chakraborty, A fuzzy random continuous review inventory system,, International Journal of Production Economics, 132 (2011), 101.  doi: 10.1016/j.ijpe.2011.03.015.  Google Scholar

[15]

S. S. Erenguc, N. C. Simpson and A. J. Vakharia, Integrated production/distribution planning in supply chains: An invited review,, European Journal of Operational Research, 115 (1999), 219.  doi: 10.1016/S0377-2217(98)90299-5.  Google Scholar

[16]

H. Farvaresh and M. M. Sepehri, A single-level mixed integer linear formulation for a bi-level discrete network design problem,, Transportation Research Part E: Logistics and Transportation Review, 47 (2011), 623.  doi: 10.1016/j.tre.2011.02.001.  Google Scholar

[17]

S. Heilpern, The expected value of a fuzzy number,, Fuzzy Sets and Systems, 47 (1992), 81.  doi: 10.1016/0165-0114(92)90062-9.  Google Scholar

[18]

G. Hua, S. Wang and C. K. Chan, A Fractional programming model for internation facility location,, Journal of Industrial and Management Optimization, 5 (2009), 629.  doi: 10.3934/jimo.2009.5.629.  Google Scholar

[19]

J. S. Hu, H. Zheng, R. Q. Xu, Y. P. Ji and C. Y. Guo, Supply chain coordination for fuzzy random newsboy problem with imperfect quality,, International Journal of Approximate Reasoning, 51 (2010), 771.  doi: 10.1016/j.ijar.2010.04.002.  Google Scholar

[20]

H. Kwakernaak, Fuzzy random variables-I. definitions and theorems,, Information Science, 15 (1978), 1.  doi: 10.1016/0020-0255(78)90019-1.  Google Scholar

[21]

H. Kwakernaak, Fuzzy random variables-II. Algorithms and examples for the discrete case,, Information Science, 17 (1979), 253.  doi: 10.1016/0020-0255(79)90020-3.  Google Scholar

[22]

R. Kruse and K. D. Meyer, "Statistics with Vague Data,", Reidel Publishing Company, (1987).  doi: 10.1007/978-94-009-3943-1.  Google Scholar

[23]

D. Karaboga, "An Idea Based on Honey Bee Swarm for Numerical Optimization,", Technical Report TR06, (2005).   Google Scholar

[24]

D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm,, Journal of Global Optimization, 39 (2007), 459.  doi: 10.1007/s10898-007-9149-x.  Google Scholar

[25]

D. Karaboga and B. Basturk, On the performance of artificial bee colony (ABC) algorithm,, Applied Soft Computing, 8 (2008), 687.  doi: 10.1016/j.asoc.2007.05.007.  Google Scholar

[26]

Ö. Kabak and F. Ülengin, Possibilistic linear-programming approach for supply chain networking decisions,, European Journal of Operational Research, 209 (2011), 253.  doi: 10.1016/j.ejor.2010.09.025.  Google Scholar

[27]

K. A. London and R. Kenley, An industrial organization economic supply chain approach for the construction industry: A review,, Construction Management and Economics, 19 (2001), 777.  doi: 10.1080/01446190110081699.  Google Scholar

[28]

Y. H. Lee and S. H. Kim, Production-distribution planning in supply chain considering capacity constraints,, Computers & Industrial Engineering, 43 (2002), 169.  doi: 10.1016/S0360-8352(02)00063-3.  Google Scholar

[29]

T. F. Liang,, Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain,, Computers & Industrial Engineering, 55 (2008), 676.  doi: 10.1016/j.cie.2008.02.008.  Google Scholar

[30]

Y. Lan, R. Zhao and W. Tang, Minimum risk criterion for uncertain production planning problems,, Computers & Industrial Engineering, (2011).   Google Scholar

[31]

X. Li, Z. Qin, L. Yang and K. Li, Entropy maximization model for the trip distribution problem with fuzzy and random parameters,, Journal of Computational and Applied Mathematics, 235 (2011), 1906.  doi: 10.1016/j.cam.2010.09.004.  Google Scholar

[32]

D. F. Pyke and M. A. Cohen, Multiproduct integrated production-distribution systems,, European Journal of Operational Research, 74 (1994), 18.  doi: 10.1016/0377-2217(94)90201-1.  Google Scholar

[33]

A. M. Sarmiento and R. Nagi, A review of integrated analysis of production-distribution systems,, IIE Transactions, 31 (1999), 1061.  doi: 10.1080/07408179908969907.  Google Scholar

[34]

H. Selim, C. Araz and I. Ozkarahan, Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach,, Transportation Research Part E: Logistics and Transportation Review, 44 (2008), 396.  doi: 10.1016/j.tre.2006.11.001.  Google Scholar

[35]

C. J. Vidal and M. Goetschalckx, Strategic production-distribution models: A critical review with emphasis on global supply chain models,, European Journal of Operational Research, 98 (1997), 1.  doi: 10.1016/S0377-2217(97)80080-X.  Google Scholar

[36]

D. Vila, A. Martel and R. Beauregard, Taking market forces into account in the design of production-distribution networks: A positioning by anticipation approach,, Journal of Industrial and Management Optimization, 2 (2006), 255.   Google Scholar

[37]

J. Xu and Z. Zeng, A discrete time optimal control model with uncertainty for dynamic machine allocation problem and its application to manufacturing and construction industries,, Applied Mathematical Modelling., ().  doi: 10.1016/j.apm.2011.10.031.  Google Scholar

[38]

Q. Liu and J. Xu, A study on facility location-allocation problem in mixed random and fuzzy environment,, Journal of Intelligent Manufacturing, 22 (2011), 389.  doi: 10.1007/s10845-009-0297-3.  Google Scholar

[39]

J. Xu, X. Zhou and S. Li, A class of chance constrained multi-objective portfolio selection model under fuzzy random environment,, Journal of Optimization Theory and Applications, 150 (2011), 530.   Google Scholar

[40]

J. Xu, L. Yao and X. Zhao, A multi-objective chance-constrained network optimal model with random fuzzy coefficients and its application to logistics distribution center location problem,, Fuzzy Optimization and Decision Making, 10 (2011), 255.   Google Scholar

[41]

J. Xu, F. Yan ans S. Li, Vehicle routing optimization with soft time windows in a fuzzy random environment,, Transportation Research Part E: Logistics and Transportation Review, 47 (2011), 1075.  doi: 10.1016/j.tre.2011.04.002.  Google Scholar

[42]

J. Xu and X. Zhou, "Fuzzy-Like Multiple Objective Decision Making,", Springer, (2011).   Google Scholar

[43]

M. Yao, J. Lin and C. Yang, An integrated approach for the operations of distribution and lateral transshipment for seasonal products - A case study in household product industry,, Journal of Intdustrial and Management Optimization, 7 (2011), 401.  doi: 10.3934/jimo.2011.7.401.  Google Scholar

[44]

G. Zhang, J. Shang and W. Li, Collaborative production planning of supply chain under price and demand uncertainty,, European Journal of Operational Research, 215 (2011), 590.  doi: 10.1016/j.ejor.2011.07.007.  Google Scholar

[45]

J. Zhang and J. Chen, Externality of contracts on supply chains with two suppliers and a common retailer,, Journal of Industrial and Management Optimization, 6 (2010), 795.  doi: 10.3934/jimo.2010.6.795.  Google Scholar

show all references

References:
[1]

R. Arbulu, I. Tommelein, K. Walsh and J. Hershauer, Value stream analysis of re-engineered construction supply chain,, Building Research & Information, 31 (2003), 161.  doi: 10.1080/09613210301993.  Google Scholar

[2]

G. Avninder, Determining loading dock requirements in production-distribution facilities under uncertainty,, Computers & Industrial Engineering, 57 (2009), 161.  doi: 10.1016/j.cie.2008.11.002.  Google Scholar

[3]

B. Akay and D. Karaboga, "A modified Artificial Bee Colony Algorithm for Real-Parameter Optimization,", Information Sciences, (2010).   Google Scholar

[4]

I. Averbakh, On-line integrated production-distribution scheduling problems with capacitated deliveries,, European Journal of Operational Research, 200 (2010), 377.  doi: 10.1016/j.ejor.2008.12.030.  Google Scholar

[5]

O. Ben-Ayed, D. E. Boyce and C. E. Blair, A general bilevel linear programming formulation of the network design problem,, Transportation Research Part B: Methodological, 22 (1988), 311.  doi: 10.1016/0191-2615(88)90006-9.  Google Scholar

[6]

B. Bilgen and I. Ozkarahan, Strategic, tactical and operational production-distribution models: A review,, International Journal of Technology Management, 28 (2004), 151.  doi: 10.1504/IJTM.2004.005059.  Google Scholar

[7]

D. Barnes-Schuster, Y. Bassok and R. Anupindi, Optimizing delivery lead time/inventory placement in a two-stage production/distribution system,, European Journal of Operational Research, 174 (2006), 1664.  doi: 10.1016/j.ejor.2002.08.002.  Google Scholar

[8]

B. Bilgen, Application of fuzzy mathematical programming approach to the production allocation and distribution supply chain network problem,, Expert Systems with Applications, 37 (2010), 4488.  doi: 10.1016/j.eswa.2009.12.062.  Google Scholar

[9]

A. Cox and P. Ireland, Managing construction supply chains: The common sense approach,, Engineering, 9 (2002), 409.   Google Scholar

[10]

M. Cheong, R. Bhatnagar and S. Graves, Logistics network design with supplier consolidation hubs and multiple shipment options,, Journal of Industrial and Management Optimization, 3 (2007), 51.  doi: 10.3934/jimo.2007.3.51.  Google Scholar

[11]

F. Cheng, S. Yang, R. Akella and X. Tang, An integrated approach for selection of service vendors in service supply chain,, Journal of Industrial and Management Optimization, 7 (2011), 907.  doi: 10.3934/jimo.2011.7.907.  Google Scholar

[12]

H. I. Calvete, C. Galé and M. Oliveros, Bilevel model for production-distribution planning solved by using ant colony optimization,, Computers & Operations Research, 38 (2011), 320.  doi: 10.1016/j.cor.2010.05.007.  Google Scholar

[13]

K. Das and S. Sengupta, A hierarchical process industry production-distribution planning model,, International Journal of Production Economics, 117 (2009), 402.  doi: 10.1016/j.ijpe.2008.12.003.  Google Scholar

[14]

O. Dey and D. Chakraborty, A fuzzy random continuous review inventory system,, International Journal of Production Economics, 132 (2011), 101.  doi: 10.1016/j.ijpe.2011.03.015.  Google Scholar

[15]

S. S. Erenguc, N. C. Simpson and A. J. Vakharia, Integrated production/distribution planning in supply chains: An invited review,, European Journal of Operational Research, 115 (1999), 219.  doi: 10.1016/S0377-2217(98)90299-5.  Google Scholar

[16]

H. Farvaresh and M. M. Sepehri, A single-level mixed integer linear formulation for a bi-level discrete network design problem,, Transportation Research Part E: Logistics and Transportation Review, 47 (2011), 623.  doi: 10.1016/j.tre.2011.02.001.  Google Scholar

[17]

S. Heilpern, The expected value of a fuzzy number,, Fuzzy Sets and Systems, 47 (1992), 81.  doi: 10.1016/0165-0114(92)90062-9.  Google Scholar

[18]

G. Hua, S. Wang and C. K. Chan, A Fractional programming model for internation facility location,, Journal of Industrial and Management Optimization, 5 (2009), 629.  doi: 10.3934/jimo.2009.5.629.  Google Scholar

[19]

J. S. Hu, H. Zheng, R. Q. Xu, Y. P. Ji and C. Y. Guo, Supply chain coordination for fuzzy random newsboy problem with imperfect quality,, International Journal of Approximate Reasoning, 51 (2010), 771.  doi: 10.1016/j.ijar.2010.04.002.  Google Scholar

[20]

H. Kwakernaak, Fuzzy random variables-I. definitions and theorems,, Information Science, 15 (1978), 1.  doi: 10.1016/0020-0255(78)90019-1.  Google Scholar

[21]

H. Kwakernaak, Fuzzy random variables-II. Algorithms and examples for the discrete case,, Information Science, 17 (1979), 253.  doi: 10.1016/0020-0255(79)90020-3.  Google Scholar

[22]

R. Kruse and K. D. Meyer, "Statistics with Vague Data,", Reidel Publishing Company, (1987).  doi: 10.1007/978-94-009-3943-1.  Google Scholar

[23]

D. Karaboga, "An Idea Based on Honey Bee Swarm for Numerical Optimization,", Technical Report TR06, (2005).   Google Scholar

[24]

D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm,, Journal of Global Optimization, 39 (2007), 459.  doi: 10.1007/s10898-007-9149-x.  Google Scholar

[25]

D. Karaboga and B. Basturk, On the performance of artificial bee colony (ABC) algorithm,, Applied Soft Computing, 8 (2008), 687.  doi: 10.1016/j.asoc.2007.05.007.  Google Scholar

[26]

Ö. Kabak and F. Ülengin, Possibilistic linear-programming approach for supply chain networking decisions,, European Journal of Operational Research, 209 (2011), 253.  doi: 10.1016/j.ejor.2010.09.025.  Google Scholar

[27]

K. A. London and R. Kenley, An industrial organization economic supply chain approach for the construction industry: A review,, Construction Management and Economics, 19 (2001), 777.  doi: 10.1080/01446190110081699.  Google Scholar

[28]

Y. H. Lee and S. H. Kim, Production-distribution planning in supply chain considering capacity constraints,, Computers & Industrial Engineering, 43 (2002), 169.  doi: 10.1016/S0360-8352(02)00063-3.  Google Scholar

[29]

T. F. Liang,, Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain,, Computers & Industrial Engineering, 55 (2008), 676.  doi: 10.1016/j.cie.2008.02.008.  Google Scholar

[30]

Y. Lan, R. Zhao and W. Tang, Minimum risk criterion for uncertain production planning problems,, Computers & Industrial Engineering, (2011).   Google Scholar

[31]

X. Li, Z. Qin, L. Yang and K. Li, Entropy maximization model for the trip distribution problem with fuzzy and random parameters,, Journal of Computational and Applied Mathematics, 235 (2011), 1906.  doi: 10.1016/j.cam.2010.09.004.  Google Scholar

[32]

D. F. Pyke and M. A. Cohen, Multiproduct integrated production-distribution systems,, European Journal of Operational Research, 74 (1994), 18.  doi: 10.1016/0377-2217(94)90201-1.  Google Scholar

[33]

A. M. Sarmiento and R. Nagi, A review of integrated analysis of production-distribution systems,, IIE Transactions, 31 (1999), 1061.  doi: 10.1080/07408179908969907.  Google Scholar

[34]

H. Selim, C. Araz and I. Ozkarahan, Collaborative production-distribution planning in supply chain: A fuzzy goal programming approach,, Transportation Research Part E: Logistics and Transportation Review, 44 (2008), 396.  doi: 10.1016/j.tre.2006.11.001.  Google Scholar

[35]

C. J. Vidal and M. Goetschalckx, Strategic production-distribution models: A critical review with emphasis on global supply chain models,, European Journal of Operational Research, 98 (1997), 1.  doi: 10.1016/S0377-2217(97)80080-X.  Google Scholar

[36]

D. Vila, A. Martel and R. Beauregard, Taking market forces into account in the design of production-distribution networks: A positioning by anticipation approach,, Journal of Industrial and Management Optimization, 2 (2006), 255.   Google Scholar

[37]

J. Xu and Z. Zeng, A discrete time optimal control model with uncertainty for dynamic machine allocation problem and its application to manufacturing and construction industries,, Applied Mathematical Modelling., ().  doi: 10.1016/j.apm.2011.10.031.  Google Scholar

[38]

Q. Liu and J. Xu, A study on facility location-allocation problem in mixed random and fuzzy environment,, Journal of Intelligent Manufacturing, 22 (2011), 389.  doi: 10.1007/s10845-009-0297-3.  Google Scholar

[39]

J. Xu, X. Zhou and S. Li, A class of chance constrained multi-objective portfolio selection model under fuzzy random environment,, Journal of Optimization Theory and Applications, 150 (2011), 530.   Google Scholar

[40]

J. Xu, L. Yao and X. Zhao, A multi-objective chance-constrained network optimal model with random fuzzy coefficients and its application to logistics distribution center location problem,, Fuzzy Optimization and Decision Making, 10 (2011), 255.   Google Scholar

[41]

J. Xu, F. Yan ans S. Li, Vehicle routing optimization with soft time windows in a fuzzy random environment,, Transportation Research Part E: Logistics and Transportation Review, 47 (2011), 1075.  doi: 10.1016/j.tre.2011.04.002.  Google Scholar

[42]

J. Xu and X. Zhou, "Fuzzy-Like Multiple Objective Decision Making,", Springer, (2011).   Google Scholar

[43]

M. Yao, J. Lin and C. Yang, An integrated approach for the operations of distribution and lateral transshipment for seasonal products - A case study in household product industry,, Journal of Intdustrial and Management Optimization, 7 (2011), 401.  doi: 10.3934/jimo.2011.7.401.  Google Scholar

[44]

G. Zhang, J. Shang and W. Li, Collaborative production planning of supply chain under price and demand uncertainty,, European Journal of Operational Research, 215 (2011), 590.  doi: 10.1016/j.ejor.2011.07.007.  Google Scholar

[45]

J. Zhang and J. Chen, Externality of contracts on supply chains with two suppliers and a common retailer,, Journal of Industrial and Management Optimization, 6 (2010), 795.  doi: 10.3934/jimo.2010.6.795.  Google Scholar

[1]

Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021027

[2]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[3]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[4]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[5]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[10]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[11]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[12]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[13]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[14]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]