April  2013, 9(2): 365-389. doi: 10.3934/jimo.2013.9.365

Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme

1. 

School of Mathematics & Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Received  January 2012 Revised  May 2012 Published  February 2013

In this paper we propose a penalty method combined with a finite difference scheme for the Hamilton-Jacobi-Bellman (HJB) equation arising in pricing American options under proportional transaction costs. In this method, the HJB equation is approximated by a nonlinear partial differential equation with penalty terms. We prove that the viscosity solution to the penalty equation converges to that of the original HJB equation when the penalty parameter tends to positive infinity. We then present an upwind finite difference scheme for solving the penalty equation and show that the approximate solution from the scheme converges to the viscosity solution of the penalty equation. A numerical algorithm for solving the discretized nonlinear system is proposed and analyzed. Numerical results are presented to demonstrate the accuracy of the method.
Citation: Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial & Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365
References:
[1]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Analysis, 4 (1991), 271.   Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.   Google Scholar

[3]

P. P. Boyle and K. S. Tan, Lure of the linear,, Risk, 7 (1994), 43.   Google Scholar

[4]

P. P Boyle and T. Vorst, Option replication in discrete time with transaction costs,, The Journal of Finance, 47 (1992), 271.   Google Scholar

[5]

L. Clewlow and S. Hodge, Optimal delta-hedging under transaction costs. Computational financial modelling,, Journal of Economic Dynamics and Control, 21 (1997), 1353.  doi: 10.1016/S0165-1889(97)00030-4.  Google Scholar

[6]

M. G. Crandall and P.-L. Lions, Viscosity solution of Hamilton-Jacobi equations,, Trans. Am. Math. Soc., 277 (1983), 1.  doi: 10.2307/1999343.  Google Scholar

[7]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

A. Damgaard, Utility based option evaluation with proportional transaction costs,, Journal of Economic Dynamics and Control, 27 (2003), 667.  doi: 10.1016/S0165-1889(01)00068-9.  Google Scholar

[9]

A. Damgaard, Computation of reservation prices of options with proportional transaction costs,, Journal of Economic Dynamics and Control, 30 (2006), 415.  doi: 10.1016/j.jedc.2005.03.001.  Google Scholar

[10]

M. H. A. Davis, V. G. Panas and T. Zariphopoulou, European option pricing with transaction costs,, SIAM J. Control and Optimization, 31 (1993), 470.  doi: 10.1137/0331022.  Google Scholar

[11]

M. H. A. Davis and T. Zariphopoulou, American options and transaction fees,, in, (1995).   Google Scholar

[12]

C. Edirisinghe, V. Naik and R. Uppal, Optimal replication of options with transaction costs and trading restrictions,, Journal of Financial and Quantitative Analysis, 28 (1993), 117.   Google Scholar

[13]

S. Figlewski, Options arbitrage in imperfect markets,, The Journal of Finance, 44 (1989), 1289.   Google Scholar

[14]

W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,'', Applications of Mathematics (New York), 25 (1993).   Google Scholar

[15]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs,, Review of Futures Markets, 8 (1989), 222.   Google Scholar

[16]

C. C. Huang and S. Wang, A power penalty approach to a nonlinear complementarity problem,, Operations Research Letters, 38 (2010), 72.  doi: 10.1016/j.orl.2009.09.009.  Google Scholar

[17]

C. C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem,, Nonlinear Analysis, 75 (2012), 588.  doi: 10.1016/j.na.2011.08.061.  Google Scholar

[18]

M. A. Katsoulakis, Viscosity solutions of second order fully nonlinear elliptic equations with state constrains,, Indiana Univ. Math. J., 43 (1994), 493.  doi: 10.1512/iumj.1994.43.43020.  Google Scholar

[19]

H. E. Leland, Option pricing and replication with transaction costs,, The Journal of Finance, 40 (1985), 1283.   Google Scholar

[20]

W. Li and S. Wang, Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs,, Journal of Optimization Theory and Applications, 143 (2009), 279.  doi: 10.1007/s10957-009-9559-7.  Google Scholar

[21]

W. Li and S. Wang, A numerical method for pricing European option with proportional transaction costs,, submitted., ().   Google Scholar

[22]

M. Monoyios, Option pricing with transaction costs using a Markov chain approximation. Financial decision models in a dynamical setting,, Journal of Economic Dynamics and Control, 28 (2004), 889.  doi: 10.1016/S0165-1889(03)00059-9.  Google Scholar

[23]

S. Richardson and S. Wang, The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains,, J. Ind. Manag. Optim., 6 (2010), 161.  doi: 10.3934/jimo.2010.6.161.  Google Scholar

[24]

H. M. Soner, Optimal control with state-space constraint. I,, SIAM J. Control Optimization., 24 (1986), 552.  doi: 10.1137/0324032.  Google Scholar

[25]

K. B. Toft, On the mean-variance tradeoff in option replication with transaction costs,, Journal of Financial and Quantitative Analysis, 31 (1996), 233.   Google Scholar

[26]

R. S. Varga, "Matrix Iterative Analysis,", Prentice-Hall, (1962).   Google Scholar

[27]

C. Vázquez, An upwind numerical approach for an American and European option pricing model,, Appl. Math. Comput., 97 (1998), 273.  doi: 10.1016/S0096-3003(97)10122-9.  Google Scholar

[28]

S. Wang, L. S. Jennings and K. L. Teo, Numerical solution of Hamilton-Jacobi-Bellman equations by an upwind finite volume method,, Journal of Global Optimization, 27 (2003), 177.  doi: 10.1023/A:1024980623095.  Google Scholar

[29]

S. Wang, A novel fitted finite volume method for the Black-Scholes equations governing option pricing,, IMA Journal of Numerical Analysis, 24 (2004), 699.  doi: 10.1093/imanum/24.4.699.  Google Scholar

[30]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, Journal of Optimization Theory and Applications, 129 (2006), 227.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[31]

S. Wang and X. Yang, A power penalty method for linear complementarity problems,, Operations Research Letters, 36 (2008), 211.  doi: 10.1016/j.orl.2007.06.006.  Google Scholar

[32]

V. I. Zakamouline, European option pricing and hedging with both fixed and proportional transaction costs,, Journal of Economic Dynamics and Control, 30 (2006), 1.  doi: 10.1016/j.jedc.2004.11.002.  Google Scholar

[33]

V. I. Zakamouline, American option pricing and exercising with transaction costs,, Journal of Computational Finance, 8 (2005), 81.   Google Scholar

[34]

K. Zhang and S. Wang, Convergence property of an interior penalty approach to pricing American option,, J. Ind. Manag. Optim., 7 (2011), 435.  doi: 10.3934/jimo.2011.7.435.  Google Scholar

[35]

K. Zhang and S. Wang, Pricing American bond options using a penalty method,, Automatica, 48 (2012), 472.  doi: 10.1016/j.automatica.2012.01.009.  Google Scholar

show all references

References:
[1]

G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations,, Asymptotic Analysis, 4 (1991), 271.   Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities,, Journal of Political Economy, 81 (1973), 637.   Google Scholar

[3]

P. P. Boyle and K. S. Tan, Lure of the linear,, Risk, 7 (1994), 43.   Google Scholar

[4]

P. P Boyle and T. Vorst, Option replication in discrete time with transaction costs,, The Journal of Finance, 47 (1992), 271.   Google Scholar

[5]

L. Clewlow and S. Hodge, Optimal delta-hedging under transaction costs. Computational financial modelling,, Journal of Economic Dynamics and Control, 21 (1997), 1353.  doi: 10.1016/S0165-1889(97)00030-4.  Google Scholar

[6]

M. G. Crandall and P.-L. Lions, Viscosity solution of Hamilton-Jacobi equations,, Trans. Am. Math. Soc., 277 (1983), 1.  doi: 10.2307/1999343.  Google Scholar

[7]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

A. Damgaard, Utility based option evaluation with proportional transaction costs,, Journal of Economic Dynamics and Control, 27 (2003), 667.  doi: 10.1016/S0165-1889(01)00068-9.  Google Scholar

[9]

A. Damgaard, Computation of reservation prices of options with proportional transaction costs,, Journal of Economic Dynamics and Control, 30 (2006), 415.  doi: 10.1016/j.jedc.2005.03.001.  Google Scholar

[10]

M. H. A. Davis, V. G. Panas and T. Zariphopoulou, European option pricing with transaction costs,, SIAM J. Control and Optimization, 31 (1993), 470.  doi: 10.1137/0331022.  Google Scholar

[11]

M. H. A. Davis and T. Zariphopoulou, American options and transaction fees,, in, (1995).   Google Scholar

[12]

C. Edirisinghe, V. Naik and R. Uppal, Optimal replication of options with transaction costs and trading restrictions,, Journal of Financial and Quantitative Analysis, 28 (1993), 117.   Google Scholar

[13]

S. Figlewski, Options arbitrage in imperfect markets,, The Journal of Finance, 44 (1989), 1289.   Google Scholar

[14]

W. H. Fleming and H. M. Soner, "Controlled Markov Processes and Viscosity Solutions,'', Applications of Mathematics (New York), 25 (1993).   Google Scholar

[15]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs,, Review of Futures Markets, 8 (1989), 222.   Google Scholar

[16]

C. C. Huang and S. Wang, A power penalty approach to a nonlinear complementarity problem,, Operations Research Letters, 38 (2010), 72.  doi: 10.1016/j.orl.2009.09.009.  Google Scholar

[17]

C. C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem,, Nonlinear Analysis, 75 (2012), 588.  doi: 10.1016/j.na.2011.08.061.  Google Scholar

[18]

M. A. Katsoulakis, Viscosity solutions of second order fully nonlinear elliptic equations with state constrains,, Indiana Univ. Math. J., 43 (1994), 493.  doi: 10.1512/iumj.1994.43.43020.  Google Scholar

[19]

H. E. Leland, Option pricing and replication with transaction costs,, The Journal of Finance, 40 (1985), 1283.   Google Scholar

[20]

W. Li and S. Wang, Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs,, Journal of Optimization Theory and Applications, 143 (2009), 279.  doi: 10.1007/s10957-009-9559-7.  Google Scholar

[21]

W. Li and S. Wang, A numerical method for pricing European option with proportional transaction costs,, submitted., ().   Google Scholar

[22]

M. Monoyios, Option pricing with transaction costs using a Markov chain approximation. Financial decision models in a dynamical setting,, Journal of Economic Dynamics and Control, 28 (2004), 889.  doi: 10.1016/S0165-1889(03)00059-9.  Google Scholar

[23]

S. Richardson and S. Wang, The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains,, J. Ind. Manag. Optim., 6 (2010), 161.  doi: 10.3934/jimo.2010.6.161.  Google Scholar

[24]

H. M. Soner, Optimal control with state-space constraint. I,, SIAM J. Control Optimization., 24 (1986), 552.  doi: 10.1137/0324032.  Google Scholar

[25]

K. B. Toft, On the mean-variance tradeoff in option replication with transaction costs,, Journal of Financial and Quantitative Analysis, 31 (1996), 233.   Google Scholar

[26]

R. S. Varga, "Matrix Iterative Analysis,", Prentice-Hall, (1962).   Google Scholar

[27]

C. Vázquez, An upwind numerical approach for an American and European option pricing model,, Appl. Math. Comput., 97 (1998), 273.  doi: 10.1016/S0096-3003(97)10122-9.  Google Scholar

[28]

S. Wang, L. S. Jennings and K. L. Teo, Numerical solution of Hamilton-Jacobi-Bellman equations by an upwind finite volume method,, Journal of Global Optimization, 27 (2003), 177.  doi: 10.1023/A:1024980623095.  Google Scholar

[29]

S. Wang, A novel fitted finite volume method for the Black-Scholes equations governing option pricing,, IMA Journal of Numerical Analysis, 24 (2004), 699.  doi: 10.1093/imanum/24.4.699.  Google Scholar

[30]

S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation,, Journal of Optimization Theory and Applications, 129 (2006), 227.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[31]

S. Wang and X. Yang, A power penalty method for linear complementarity problems,, Operations Research Letters, 36 (2008), 211.  doi: 10.1016/j.orl.2007.06.006.  Google Scholar

[32]

V. I. Zakamouline, European option pricing and hedging with both fixed and proportional transaction costs,, Journal of Economic Dynamics and Control, 30 (2006), 1.  doi: 10.1016/j.jedc.2004.11.002.  Google Scholar

[33]

V. I. Zakamouline, American option pricing and exercising with transaction costs,, Journal of Computational Finance, 8 (2005), 81.   Google Scholar

[34]

K. Zhang and S. Wang, Convergence property of an interior penalty approach to pricing American option,, J. Ind. Manag. Optim., 7 (2011), 435.  doi: 10.3934/jimo.2011.7.435.  Google Scholar

[35]

K. Zhang and S. Wang, Pricing American bond options using a penalty method,, Automatica, 48 (2012), 472.  doi: 10.1016/j.automatica.2012.01.009.  Google Scholar

[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[3]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[4]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[5]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[8]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[9]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[10]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[13]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[14]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[15]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[16]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[17]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[18]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[19]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[20]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]