\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model

Abstract Related Papers Cited by
  • This paper extends the model in Riesner (2007) to a Markov modulated Lévy process. The parameters of the Lévy process switch over time according to the different states of an economy, which is described by a finite-state continuous time Markov chain. Employing the local risk minimization method, we find an optimal hedging strategy for a general payment process. Finally, we give an example for single unit-linked insurance contracts with guarantee to display the specific locally risk-minimizing hedging strategy.
    Mathematics Subject Classification: Primary: 90C90; Secondary: 60J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Aase and S.-A. PerssonPricing of unit-linked life insurance policies, Scandinavian Actuarial Journal, 1994, 26-52. doi: 10.1080/03461238.1994.10413928.

    [2]

    J. P. Ansel and C. Stricker, Décomposition de Kunita-Watanabe, in "Séminaire de Probabilités," XXVII, Lecture Notes in Mathematics, 1557, Springer, Berlin, (1993), 30-32.doi: 10.1007/BFb0087960.

    [3]

    J. Bi and J. Guo, Hedging unit-linked life insurance contracts in a financial market driven by shot-noise processes, Applied Stochastic Models In Business And Industry, 26 (2010), 609-623.doi: 10.1002/asmb.807.

    [4]

    T. Chan, Pricing contingent claims on stocks driven by Lévy processes, The Annals of Applied Probability, 9 (1999), 504-528.doi: 10.1214/aoap/1029962753.

    [5]

    A. Deshpande and M. K. Ghosh, Risk minimizing option pricing in a regime switching market, Stochastic Analysis and Applications, 26 (2008), 313-324.doi: 10.1080/07362990701857194.

    [6]

    R. J. Elliott, L. Chan and T. K. Siu, Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.

    [7]

    H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information, in "Applied Stochastic Analysis" (eds. M. Davis and R. Elliot) (London, 1989), Stochastic Monographs, 5, Gordon and Breach, New York, (1991), 389-414.

    [8]

    H. Föllmer and D. Sondermann, Hedging of non-redundant contingent claims, in "Contributions to Mathematical Economics" (eds. W. Hildenbrand and A. Mas-Colell), North-Holland, Elsevier, (1986), 205-223.

    [9]

    M. Ghosh, A. Arapostathis and S. Marcus, Ergodic control of switching diffusions, SIAM Journal of Contral and Optimization, 35 (1997), 1952-1988.doi: 10.1137/S0363012996299302.

    [10]

    J. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Ecomometrica, 57 (1989), 357-384.doi: 10.2307/1912559.

    [11]

    J. Hoem, Markov chain models in life insurance, Blätter der Deut. Gesell. Versicherungsmath, 9 (1969), 91-107.

    [12]

    S. Lin, K. Tan and H. Yang, Pricing annuity guarantees under a regime-switching model, North American Actuarial Journal, 13 (2009), 316-332.doi: 10.1080/10920277.2009.10597557.

    [13]

    T. Møller, Risk-minimizing hedging strategies for unit-linked life insurance contracts, ASTIN Bulletin, 28 (1998), 17-47.

    [14]

    T. Møller, Risk-mimizing hedging strategies for insurance payment processes, Finance and Stochastics, 5 (2001), 419-446.doi: 10.1007/s007800100041.

    [15]

    R. NorbergHattendorff's theorem and Thiele's differential equation generalized, Scandinavian Actuarial Journal, 1992, 2-14. doi: 10.1080/03461238.1992.10413894.

    [16]

    M. Riesner, Hedging life insurance contracts in a Lévy process financial market, Insurance: Mathematics and Economics, 38 (2006), 599-608.doi: 10.1016/j.insmatheco.2005.12.004.

    [17]

    M. Riesner, Locally risk-minimizing hedging of insurance payment streams, Astin Bulletin, 37 (2007), 67-91.doi: 10.2143/AST.37.1.2020799.

    [18]

    M. Schweizer, Option hedging for semimartingales, Stochastic Processes and Their Applications, 37 (1991), 339-363.doi: 10.1016/0304-4149(91)90053-F.

    [19]

    M. Schweizer, Risk-minimizing hedging strategies under restricted information, Mathematical Finance, 4 (1994), 327-342.doi: 10.1111/j.1467-9965.1994.tb00062.x.

    [20]

    M. Schweizer, A guided tour through quadratic hedging approaches, in "Option Pricing, Interest Rates and Risk Management," Handbooks in Mathematical Finance, Cambridge University Press, (2001), 538-574.doi: 10.1017/CBO9780511569708.016.

    [21]

    M. Schweizer, Local risk-minimization for multidimensional assets and payment streams, in "Advances in Mathematics of Finance," Banach Center Publications, 83, Polish Acad. Sci. Inst. Math., Warsaw, (2008), 213-229.doi: 10.4064/bc83-0-13.

    [22]

    L. Qian, H. Yang and R. Wang, Locally risk-minimizing hedging strategies for unit-linked life insurance contracts under a regime switching Lévy model, Frontiers of Mathematics in China, 6 (2011), 1185-1202.doi: 10.1007/s11464-011-0100-6.

    [23]

    N. Vandaele and M. Vanmaele, A locally risk-minimizing hedging strategy for unit-linked life insurance contracts in a Lévy process financial market, Insurance: Mathematics and Economics, 42 (2008), 1128-1137.doi: 10.1016/j.insmatheco.2008.03.001.

    [24]

    T. Choulli, N. Vandaele and M. Vanmaele, The Föllmer-Schweizer decomposition: Comparison and description, Stochastic Processes and their Applications, 120 (2010), 853-872.doi: 10.1016/j.spa.2010.02.004.

    [25]

    L. Xu and R. Wang, Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate, Journal of Industrial and Management Optimization, 2 (2006), 165-175.doi: 10.3934/jimo.2006.2.165.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return